Skip to main content

2.7 Special kinds of rings

Local ring

def: Local ring

ARC!mMI(A)ARLlocal ring\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal {C}} \\ &\exists! \mathfrak m \in \mathfrak M_I(A) \\ \hline \\ &A \in \mathcal R^\mathcal L - \text{local ring} \end{align*}

Example: Field is a local ring

If FFF \in \mathcal F, we know that the only ideals of FF are {0}\{0\} and FF, so the only maximal ideal is {0}\{0\}

Example: Z4\Z_4

The only non-trivial ideal in Z4\Z_4 is 2Z42\Z_4, hence it's the only maximal ideal.

Proposition 2.7.1: Local ring criterion

ARCI:=AAIRA    ARL,IMI(A)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I := A \setminus A^* \\ \hline \\ &I \lhd_R A \implies A \in R^{\mathcal L}, I \in \mathfrak M_I(A) \end{align*}

Proof

Every proper ideal JRA,JAJ \lhd_R A, J \ne A should have only elements of A/AA/A^* by (2.4.6)(2.4.6). So JIJ \subseteq I.

\square

Proposition 2.7.2: Generators for module over local ring

ARLMMAmMI(A)ϕ:MM/mM,xx+mMX:={x1,,xn}M,ϕ(X)BMA/m(M/mM)M/mMMA/mYM=M    ϕ(Y)MA/m=M/mMXM=M\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal L} \\ &M \in \mathcal M_A \\ &\mathfrak m \in \mathfrak M_I(A) \\ &\phi: M \to M/\mathfrak mM, x \to x+\mathfrak mM \\ &X:=\{x_1, \ldots, x_n\} \subseteq M, \phi(X) \in \mathfrak B_{M_{A/\mathfrak m}}(M/\mathfrak mM) \\ \hline \\ &\begin{align*} &M/\mathfrak mM \in \mathcal M_{A/\mathfrak m} \hspace{0.5cm} \tag{a}\\ &\lang Y \rang_M = M \implies \lang \phi(Y) \rang_{M_{A/\mathfrak m}} = M/\mathfrak mM \hspace{0.5cm} \tag{b}\\ & \lang X \rang_M = M \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

a.

Note that xm:xMmM    xM/mM={0}\forall x \in \mathfrak m:xM \subseteq \mathfrak mM \implies xM/\mathfrak mM=\{0\}. Now (x+m)(m+mM):=xm+mM(x+\mathfrak m)\cdot(m+\mathfrak mM):= xm+\mathfrak mM. Assume xxm,mmmMx-x'\in \mathfrak m, m-m' \in \mathfrak mM:

xm+mM=(x+m)(m+mM)+mM=xm+mm+xmM+m2M+mM=xm+mMx'm' + \mathfrak mM = (x+\mathfrak m)(m+\mathfrak mM)+\mathfrak mM= \\ xm+\mathfrak mm+x\mathfrak mM+\mathfrak m^2M+\mathfrak mM=xm+\mathfrak mM

So scalar multiplication is well-defined. Now all module properties follows from the fact that MMAM \in \mathcal M_A.

b.

Consider some xM,Y={y1,,yn}x \in M, Y = \{y_1, \ldots, y_n\}. We know that x=a1y1++anynx = a_1y_1 + \ldots + a_ny_n, so ϕ(x)=a1y1++anyn+mM=(a1+m)(y1+mM)++(an+m)(yn+mM)\phi(x)=a_1y_1 + \ldots + a_ny_n + \mathfrak mM=(a_1+\mathfrak m)(y_1 + \mathfrak mM)+\ldots +(a_n+\mathfrak m)(y_n + \mathfrak mM). Since ϕ(M)=M/mM\phi(M)=M/\mathfrak mM, the set {y1+mM,,yn+mM}\{y_1 + \mathfrak mM, \ldots, y_n+\mathfrak mM\} generates M/mMM/\mathfrak mM as A/mA/\mathfrak m-module.

c.

Define N:=XMN:=\lang X \rang_M. Consider a natural homomorphism ψ:NMM/mM\psi: N \to M \to M/\mathfrak mM. Since ϕ(X)BM(M/mM)\phi(X) \in \mathfrak B_M(M/\mathfrak mM) we have ψ(N)=ψ(XM)=M/mM\psi(N)=\psi(\lang X \rang_M) = M/\mathfrak mM.

Consider some mMm \in M and m+mMM/mMm+\mathfrak mM \in M/\mathfrak mM. Since ψ(N)=M/mM\psi(N)=M/\mathfrak mM we know that nN:n+mM=ψ(n)=m+mM    mnmM\exists n \in N: n+\mathfrak mM = \psi(n) = m + \mathfrak mM \implies m - n \in \mathfrak mM. In other words mM:nN,im,m2M:m=n+im2\forall m \in M: \exists n \in N, i \in \mathfrak m, m_2 \in M: m = n+im_2 or N+mMMN+\mathfrak mM \supseteq M.

On the other hand NM,mMM    N+mMMN\subseteq M, \mathfrak mM \subseteq M \implies N+\mathfrak mM \subseteq M so:

N+mM=MN+\mathfrak mM = M

Now we can apply (2.6.11)(2.6.11) to finish the proof

\square

Radicals

def: Radical ideal

ARCIRAI:={xA:nN:xnI}\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \lhd_R A \\ \hline \\ &\sqrt I:=\{x \in A: \exists n \in \N: x^n \in I\} \end{align*}

Proposition 2.7.3: Radical ideal is ideal

ARCIRAIRA\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \lhd_R A \\ \hline \\ &\sqrt I \lhd_R A \end{align*}

Proof

First, note that II    II \subseteq \sqrt I \implies I \ne \empty.

Second consider some x,yIx, y \in \sqrt I. We know that a,bI:a=xm,b=yn\exists a, b \in I: a = x^m, b = y^n. If we examine (xy)m+n(x-y)^{m+n}, we can see that it will be a sum of cixjyk,j+k=m+nc_ix^jy^k, j+k = m+n and ciAc_i \in A. It's easy to see that either jmj \ge m or knk \ge n, so cixjykIc_ix^jy^k \in I. Thus xyIx-y \in \sqrt I.

Finally aA,xI:yI:xn=y\forall a \in A, x \in \sqrt I: \exists y \in I: x^n=y we have (ax)n=anxnI(ax)^n = a^nx^n \in I, so axIax \in \sqrt I.

\square

Proposition 2.7.4: Nilradical is an intersection of all prime ideals

ARC{0}=PPI(A)P\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ \hline \\ &\sqrt{\{0\}}=\bigcap_{P \in \mathfrak P_I(A)}P \end{align*}

Proof

Let's prove {0}PPI(A)P\sqrt{\{0\}} \subseteq \bigcap_{P \in \mathfrak P_I(A)}P

Consider arbitrary a{0},PPI(A)a \in \sqrt{\{0\}}, P \in \mathfrak P_I(A). We want to prove that aPa \in P

a{0}    nN:an=0P    an1aP    (aP)(an1P)a \in \sqrt{\{0\}} \implies \exists n \in \N: a^n = 0 \in P \implies \\ a^{n-1}\cdot a \in P \implies (a \in P) \vee (a^{n-1} \in P)

If aPa \in P we're done, an1Pa^{n-1} \in P otherwise, we're done by induction.

Now let's prove {0}PPI(A)P\sqrt{\{0\}} \supseteq \bigcap_{P \in \mathfrak P_I(A)}P

Assume a{0}a \notin \sqrt {\{0\}}. Consider the set of ideals Σ:={IRA:n>0:anI}\Sigma:= \{I \lhd_R A: \forall n > 0: a^n \notin I\}. Obviously {0}Σ\{0\} \in \Sigma. Similarly to (2.3.5)(2.3.5) we can prove that Σ\Sigma has a maximal element by inclusion that we denote by m\mathfrak m.

Now let's prove that mPI(A)\mathfrak m \in \mathfrak P_I(A). Consider x,ymx, y \notin \mathfrak m. Then the ideals m+xI\mathfrak m+\lang x \rang_I, m+yI\mathfrak m+\lang y \rang_I are strict supersets of m\mathfrak m and so doesn't belong to Σ\Sigma.

n,mN:amm+xI,anm+yI    am+nm+xyI    m+xyIΣ    xym\exists n, m \in \N: a^m \in \mathfrak m + \lang x \rang_I, a^n \in \mathfrak m + \lang y \rang_I \implies \\ a^{m+n} \in \mathfrak m + \lang xy \rang_I \implies \mathfrak m + \lang xy \rang_I \notin \Sigma \implies \\ xy \notin \mathfrak m

So we proved (xm)(ym)    xym(x \notin \mathfrak m) \wedge (y \notin \mathfrak m) \implies xy \notin \mathfrak m. Thus

xym    (xm)(ym)xy \in \mathfrak m \implies (x \in \mathfrak m) \vee (y \in \mathfrak m)

And we proved that mPI(A)\mathfrak m \in \mathfrak P_I(A). Next, mΣ    n>0:anm    am    aPPI(A)P\mathfrak m \in \Sigma \implies \forall n > 0: a^n \notin \mathfrak m \implies a \notin \mathfrak m \implies a \notin \bigcap_{P \in \mathfrak P_I(A)}P. So we proved a{0}    aPPI(A)Pa \notin \sqrt {\{0\}} \implies a \notin \bigcap_{P \in \mathfrak P_I(A)}P or equivalently

aPPI(A)P    a{0}a \in \bigcap_{P \in \mathfrak P_I(A)}P \implies a \in \sqrt{\{0\}}

\square

Corrolary 2.7.5: The radical of an ideal is the intersection of all prime ideals containing it

ARCIRAI=PPI(A),IPP\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \lhd_R A \\ \hline \\ &\sqrt{I}=\bigcap_{P \in \mathfrak P_I(A), I \subseteq P}P \end{align*}

Proof

We want to consider factor ring A/IA/I and natural homomorphism ϕ\phi into it. Notice that:

rnI    rn+I=I    (r+I)n=Ir^n \in I \iff r^n+I = I \iff (r+I)^n = I

So under (2.3.12)(2.3.12) I{0+I}\sqrt I \mapsto \sqrt {\{0 + I\}}. We know by (2.7.4)(2.7.4) that the latter is the intersection of all prime ideals in A/IA/I. And by (2.3.12)(2.3.12) these ideals are mapped to prime ideals in AA containing II.

\square

Proposition 2.7.6: Radical power inclusion

NRNIRNmN:(I)mI\begin{align*} &\sphericalangle \\ &N \in \mathcal R^{\mathcal N} \\ &I \lhd_R N \\ \hline \\ &\exists m \in \N: (\sqrt I)^m \subseteq I \end{align*}

Proof

Since I\sqrt I is finitely generated, assume I=a1,,anI\sqrt I=\lang a_1, \ldots, a_n \rang_I. Then i:niN:ainiI\forall i: \exists n_i \in \N: a_i^{n_i} \in I . Define m:=i=1k(ni1)+1m:=\sum_{i=1}^k(n_i-1)+1. Then (I)m(\sqrt I)^m is generated by the products a1r1anrna_1^{r_1}\cdot \ldots \cdot a_n^{r_n} with ri=m\sum r_i = m. By the definition of mm, rini\exists r_i \ge n_i, so each product will be in II. Thus (I)mI(\sqrt I)^m \subseteq I.

\square

Ideal quotients

def: Ideal quotient

ARCI,JRAaA(I:J):={xA:xJI}(I:a):=(I:aI)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I, J \lhd_R A \\ &a \in A \\ \hline \\ &(I:J):= \{x \in A: xJ \subseteq I\} \\ &(I:a) := (I:\lang a \rang_I) \end{align*}

Proposition 2.7.7: Ideal quotient is ideal

ARCI,JRA(I:J)RA\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I, J \lhd_R A \\ \hline \\ &(I:J) \lhd_R A \end{align*}

Proof

0(I:J)    (I:J)0 \in (I:J) \implies (I:J) \ne \empty x,y(I:J),zJ:(xy)z=xzIyzII    xy(I:J)\forall x, y \in (I:J), z \in J: (x - y)z = \underbrace{xz}_{\in I}-\underbrace{yz}_{\in I} \in I \implies \\ x-y \in (I:J) x(I:J),zJ,kA:kxzII    kx(I:J)\forall x \in (I:J), z \in J, k \in A: k\underbrace{xz}_{\in I} \in I \implies kx \in (I:J)

\square

Primary ideals

def: Primary ideal

ARCIRA,IAx,yA:xyI    nN:(xI)(ynI)IPI(A)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \lhd_R A, I \ne A \\ &\forall x, y \in A: xy \in I \implies \exists n \in \N: (x \in I) \vee (y^n \in I) \\ \hline \\ &I \in \sqrt \mathfrak P_I(A) \end{align*}

Proposition 2.7.8: Radical of a primary is prime

ARCIPI(A)IPI(A)JPI(A),IJ    IJ\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \in \sqrt{\mathfrak P}_I(A) \\ \hline \\ &\begin{align*} &\sqrt I \in \mathfrak P_I(A) \tag{a}\\ &\forall J \in \mathfrak P_I(A), I \subseteq J \implies \sqrt I \subseteq J \hspace{1cm} \tag{b} \\ \end{align*} \end{align*}

Proof

a.

x,yA:xyI    mN:(xy)mI    IPI(A)(xmI)(ynmI)    (xI)(yI)\forall x, y \in A: xy \in \sqrt I \implies \exists m \in \N: (xy)^m \in I \overset{I \in \sqrt{\mathfrak P}_I(A)}\implies \\ (x^m \in I) \vee (y^{nm} \in I) \implies (x \in \sqrt I) \vee (y \in \sqrt I)

b.

Follows from (2.7.5)(2.7.5)

\square

Proposition 2.7.9: Ideal with maximal radical is primary

ARCIRAIMI(A)IPI(A)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &I \lhd_R A \\ &\sqrt I \in \mathfrak M_I(A) \\ \hline \\ &I \in \sqrt \mathfrak P_I(A) \end{align*}

Proof

Сonsider a factor ring A/IA/I. By (2.3.12)(2.3.12) I{0+I}\sqrt I \mapsto \sqrt {\{0 + I\}}. Since IMI(A)\sqrt I \in \mathfrak M_I(A), and there are no ideals containing I\sqrt I, then there are no ideals containing {0+I}\sqrt {\{0 + I\}} in A/IA/I. Moreover, by (2.7.5)(2.7.5) {0+I}\sqrt {\{0 + I\}} is the intersection of all prime ideals, so it's the only prime ideal in A/IA/I and hence maximal.

Since A/IA/I is local, each element of A/IA/I is either in {0+I}\sqrt {\{0 + I\}} or a unit. Each zero divisor would be in {0+I}\sqrt {\{0 + I\}}, otherwise if xu=0    xuu1=0    x=0xu=0 \implies x uu^{-1}=0 \implies x = 0.

x,yA:xyI    xy+I=I    (x+I)(y+I)=I    y+I{0+I}    nN:(y+I)n=yn+I=I    ynI\forall x, y \in A: xy \in I \implies xy+I = I \implies \\ (x+I)(y+I)=I \implies y+I \in \sqrt{\{0+I\}} \implies \\ \exists n \in \N: (y + I)^n = y^n + I = I \implies y^n \in I

\square

Proposition 2.7.10: m-primary ideal criteria

NRNIRNmMI(N)The following are equivalent:I=m,IPI(N)I=mnN:mnIm\begin{align*} &\sphericalangle \\ &N \in \mathcal R^{\mathcal N} \\ &I \lhd_R N \\ &\mathfrak m \in \mathfrak M_I(N) \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} & \sqrt I = \mathfrak m, I\in \sqrt{\mathfrak P}_I(N) \hspace{1cm} \tag{a}\\ & \sqrt I = \mathfrak m \hspace{1cm} \tag{b}\\ & \exists n \in \N: \mathfrak m^n \subseteq I \subseteq \mathfrak m \tag{c}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Obvious

(b)    (a)(b) \implies (a)

Follows from (2.7.9)(2.7.9)

(b)    (c)(b) \implies (c)

Follows from (2.7.6)(2.7.6)

(c)    (b)(c) \implies (b)

mn={xA:m:xmmn}\sqrt {\mathfrak m^n} = \{x \in A: \exists m: x^m \in \mathfrak m^n\}. Obviously mmn\mathfrak m \subseteq \sqrt {\mathfrak m^n} if we assume m:=nm:=n. On the other hand mnm    mnm(2.7.5)m\mathfrak m^n \subseteq \mathfrak m \implies \sqrt{\mathfrak m^n} \subseteq \sqrt \mathfrak m \overset{(2.7.5)}\subseteq \mathfrak m. So

m=mnIm=m\mathfrak m = \sqrt {\mathfrak m^n} \subseteq \sqrt I \subseteq \sqrt \mathfrak m = \mathfrak m

\square

Dimension

def: Krull dimension

ARCdimA:=supn{P0P1Pn,PiPI(A)}\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ \hline \\ &\dim A:=\sup_n\{P_0 \subset P_1 \subset \ldots \subset P_n, P_i \in \mathfrak P_I(A)\} \end{align*}

def: Height of a prime ideal

ARCPPI(A)ht(P):=supn{P0P1Pn=P,PiPI(A)}\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &P \in \mathfrak P_I(A) \\ \hline \\ &\text{ht}(P):=\sup_n\{P_0 \subset P_1 \subset \ldots \subset P_n=P, P_i \in \mathfrak P_I(A)\} \end{align*}

Artin rings

def: Artin ring

TRCIiRT,I1I2    nN:k>n:Ik=In TRA\begin{align*} &\sphericalangle \\ &T \in \mathcal R^{\mathcal C} \\ &I_i \lhd_R T, I_1 \supseteq I_2 \supseteq \ldots \implies \exists n \in \N: \forall k > n: I_k = I_n \ \\ \hline \\ &T \in \mathcal R^{\mathcal A} \end{align*}

Proposition 2.7.11: Artin ring criterion

TRA    TRN,dimT=0T \in \mathcal R^{\mathcal A} \iff T \in \mathcal R^{\mathcal N}, \dim T = 0

Proof

We will not prove this theorem here as it requires a number of technical propositions which we want to avoid for brevity. For details see see Michael Atiyah "Introduction To Commutative Algebra", Theorem 8.5

Proposition 2.7.12: Nilradical is nilpotent

TRAnN:({0})n={0}\begin{align*} &\sphericalangle \\ &T \in \mathcal R^{\mathcal A} \\ \hline \\ &\exists n \in N: (\sqrt {\{0\}})^n = \{0\} \end{align*}

Proof

By the definition of Artin rings: nN:I:=({0})n=({0})n+1=\exists n \in N: I: = (\sqrt {\{0\}})^n = (\sqrt {\{0\}})^{n+1} = \ldots. We need to prove I=0I = 0. Assume not and let Σ:={JRT:IJ{0}}\Sigma:= \{J \lhd_R T:IJ\ne\{0\} \}. IΣ    ΣI \in \Sigma \implies \Sigma \ne \empty. Let KK be the minimal by inclusion element in Σ\Sigma.

Obviously IK{0}    xK:xI{0}IK \ne \{0\} \implies \exists x \in K: xI \ne \{0\}. But xIK\lang x \rang_I \subseteq K and xIΣ\lang x \rang_I \in \Sigma so by minimality of KK we have xI=K\lang x \rang_I = K. Next (xI)I=xI2=xI{0}(xI)I=xI^2 = xI \ne \{0\}. So similarly by minimality xI=xIxI = \lang x \rang_I. So yI:x=xy\exists y \in I: x = xy. And so we have:

x=xy=xy2==xyk=x = xy = xy^2 = \ldots = xy^k = \ldots

Next, yI=({0})n{0} y \in I = (\sqrt {\{0\}})^n \subseteq \sqrt {\{0\}}. So for some kk we have yk=0y^k = 0 and consequently x=0x = 0 which contradicts to the definition of xx.

\square

Proposition 2.7.13: Ideals in Artin local ring

TRARLmMI(T)The following are equivalent:IRT    (xT:xI=I)(nN:I=mn)xT:xI=mdimT/mm/m21\begin{align*} &\sphericalangle \\ &T \in \mathcal R^{\mathcal A} \cap \mathcal R^{\mathcal L}\\ &\mathfrak m \in \mathfrak M_I(T) \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} &I \lhd_R T \implies (\exists x \in T: \lang x \rang_I = I) \wedge (\exists n \in \N: I = \mathfrak m^n) \hspace{0.5cm} \tag{a}\\ &\exists x \in T: \lang x \rang_I = \mathfrak m \hspace{0.5cm} \tag{b}\\ & \dim_{T/\mathfrak m}\mathfrak m/\mathfrak m^2 \leq 1 \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Obvious

(b)    (c)(b) \implies (c)

Follows from (2.7.2.b)(2.7.2.b) by assuming M:=mMTM:=\mathfrak m \in \mathcal M_T

(c)    (a)(c) \implies (a)

If dimT/mm/m2=0\dim_{T/\mathfrak m}\mathfrak m/\mathfrak m^2 = 0 then m=m2\mathfrak m = \mathfrak m^2. Assuming I:=m,M:=mMTI:=\mathfrak m, M:=\mathfrak m \in \mathcal M_T (note that TRNT \in \mathcal R^{\mathcal N} and so m\mathfrak m is finitely generated) and applying (2.6.10)(2.6.10) we have m=0\mathfrak m=0. So every ideal is {0}\{0\}.

If dimT/mm/m2=1\dim_{T/\mathfrak m}\mathfrak m/\mathfrak m^2 = 1 then by (2.7.2.c)(2.7.2.c) m=xI\mathfrak m = \lang x \rang_I. Consider IRm,I{0},ImI \lhd_R \mathfrak m, I \ne \{0\}, I \ne \mathfrak m. Since TRAT \in \mathcal R^{\mathcal A}, we know that dimT=0\dim T = 0, so m\mathfrak m is the only prime ideal and so by (2.7.4)(2.7.4) m={0}\mathfrak m = \sqrt {\{0\}}. Thus by (2.7.12)(2.7.12) n:mn=0\exists n: \mathfrak m^n = 0.

This implies that

r:Imr,Imr+1\exists r: I \subseteq \mathfrak m^r, I \nsubseteq \mathfrak m^{r+1}

and thus yI,tT:y=txr,yxr+1I\exists y \in I, \exists t \in T: y=tx^r, y \notin \lang x^{r+1} \rang_I. So txrxr+1I    txI=mtx^r \notin \lang x^{r+1} \rang_I \implies t \notin \lang x \rang_I=\mathfrak m and so by (2.7.1)(2.7.1) tTt \in T^*. So xr=t1yIx^r=t^{-1}y \in I.

Finally xrI    mr=xrIImr    I=xrI=mrx^r \in I \implies \mathfrak m^r = \lang x^r \rang_I \subseteq I \subseteq \mathfrak m^r \implies I = \lang x^r \rang_I = \mathfrak m^r

\square.

Proposition 2.7.14: Maximal ideals filtration in Noetherian local ring

NRNRLmMI(N)Either n:mnmn+1 or (n:mn=0)(NRA)\begin{align*} &\sphericalangle \\ &N \in \mathcal R^{\mathcal N} \cap R^{\mathcal L} \\ &\mathfrak m \in \mathfrak M_I(N) \\ \hline \\ &\text{Either } \forall n: \mathfrak m^n \ne \mathfrak m^{n+1} \text{ or } (\exists n: \mathfrak m^n = 0) \wedge (N \in \mathcal R^{\mathcal A}) \end{align*}

Proof

Assume n:mn=mn+1\exists n: \mathfrak m^n = \mathfrak m^{n+1}. By (2.3.4)(2.3.4) mn\mathfrak m^n is an ideal, it's contained in a sole maximal ideal m\mathfrak m and it's also NN-module which is finitely generated since NRNN \in R^{\mathcal N}. So by Nakayama's lemma (2.6.10)(2.6.10) taking M:=mnMN,I:=mM:=\mathfrak m^n \in \mathcal M_N, I:=\mathfrak m we have mn=0\mathfrak m^n = 0.

Consider some PPI(N)P \in \mathfrak P_I(N). We know mn={0}P\mathfrak m^n=\{0\} \subseteq P. Next, by (2.7.5):P=P(2.7.5): \sqrt P = P. So we have mmnP=Pm    P=m\mathfrak m \subseteq \sqrt{\mathfrak m^n} \subseteq \sqrt P = P \subseteq \mathfrak m \implies P = \mathfrak m. So the only prime ideal in AA is m\mathfrak m and so dimA=0\dim A = 0 and NRAN \in \mathcal R^{\mathcal A}.

\square

Integral closures

def: Integral element, Integral closure

A,BRCARBsB:pA[x],LC(p)=1:p(s)=0sIB(A)s is integral over A in BIB(A)integral closure of A in B\begin{align*} &\sphericalangle \\ &A, B \in \mathcal R^{\mathcal {C}} \\ & A \subseteq_R B \\ & s \in B: \exists p \in A[x], LC(p)=1: p(s)=0 \\ \hline \\ &s \in \mathfrak I_B(A) - s \text{ is integral over }A \text{ in } B \\ &\mathfrak I_B(A) - \text{integral closure of } A \text{ in } B \end{align*}

def: Integrally closed ring in a superring

A,BRCIB(A)=AA is integrally closed in B\begin{align*} &\sphericalangle \\ &A, B \in \mathcal R^{\mathcal {C}} \\ & \mathfrak I_B(A) = A \\ \hline \\ &A \text{ is integrally closed in } B \end{align*}

def: Integrally closed ring

ARCIF(A)(A)=AA is integrally closed\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal {C}} \\ & \mathfrak I_{\mathfrak F(A)}(A) = A \\ \hline \\ &A \text{ is integrally closed} \end{align*}

Proposition 2.7.15: Integral element criteria

S,BRCBRSsSThe following are equivalent:sIS(B)LB[s],L<,LMB=B[s]M:B[s]M,MRS,L:L<:LMB=MMMB[s]F,L:L<:LMB=M\begin{align*} &\sphericalangle \\ & S, B \in \mathcal R^{\mathcal {C}} \\ & B \subseteq_R S \\ & s \in S \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} & s \in \mathfrak I_S(B) \tag{a}\\ & \exists L \subseteq B[s], |L| < \infty, \lang L \rang_{M_B}=B[s] \hspace{1cm} \tag{b} \\ & \exists M: B[s] \subseteq M, M \subseteq_R S, \exists L: |L| < \infty: \lang L\rang_{M_B} = M \hspace{0.5cm} \tag{c} \\ &\exists M \in \mathcal M^F_{B[s]}, \exists L: |L| < \infty: \lang L\rang_{M_B} = M \hspace{0.5cm} \tag{d} \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

sn+bn1sn1++b0=0    sn=bn1sn1b0sn+1=bn1snbn2sn1b0s=bn1(bn1sn1b0)bn2sn1b0sL:={1,,sn1}s^n+b_{n-1}s^{n-1}+\ldots+b_0 =0 \implies \\ s^n = -b_{n-1}s^{n-1}-\ldots-b_0 \\ s^{n+1} = -b_{n-1}s^{n}-b_{n-2}s^{n-1}-\ldots-b_0s= \\ -b_{n-1}(-b_{n-1}s^{n-1}-\ldots-b_0)-b_{n-2}s^{n-1}- \ldots-b_0s \\ \ldots \\ L:=\{1, \ldots, s^{n-1}\}

(b)    (c)(b) \implies (c)

M:=B[s]M:= B[s]

(c)    (d)(c) \implies (d)

M:=B[s]M:=B[s]

Note that xB[s]:xB[s]=0    x1=0    x=0\forall x \in B[s]: xB[s]=0 \implies x \cdot 1 = 0 \implies x = 0

(d)    (a)(d) \implies (a)

Consider theorem (2.6.12)(2.6.12) and take ϕs:MM,xsx\phi_s: M \rightsquigarrow M, x \mapsto sx, I:=BI:= B. First note that ϕs(M)=sMM=BM\phi_s(M) = sM \subseteq M = BM since MMB[s]M \in \mathcal M_{B[s]}. So by (2.6.12)(2.6.12) we have:

ϕsn+ϕb1ϕsn1++ϕbn=0,biB    mM:snm+b1sn1m++bnm=0,biB    (sn+b1sn1++bn)m=0\phi_s^n + \phi_{b_1}\phi_s^{n-1} + \ldots + \phi_{b_n} = 0, b_i \in B \implies \\ \forall m \in M: s^nm + b_1s^{n-1}m + \ldots + b_nm=0, b_i \in B \implies \\ (s^n + b_1s^{n-1}+ \ldots + b_n)m=0

Since MMB[s]FM \in \mathcal M^F_{B[s]} is faithful we have:

sn+b1sn1++bn=0s^n + b_1s^{n-1}+ \ldots + b_n = 0

\square

note

To see why faithfulness of module in a clause dd matter - consider B=Z[x],S=Z,s=x,M=Z[x]/xIB = \Z[x], S = \Z, s = x, M = \Z[x]/\lang x \rang_I.

First note that MRZM \cong_R \Z. M=1MZMZM = \lang 1 \rang_{M_\Z} \in \mathcal M_{\Z}, MMZ[x]M \in \mathcal M_{\Z[x]}. It will be not faithful in MZ[x]M_{\Z[x]} as mM:xm=0\forall m \in M:x \cdot m = 0. So it satisfies all properties of (d)(d) except faithfulness and obviously xIZ[x](Z)x \notin \mathfrak I_{\Z[x]}(\Z).

Corrolary 2.7.16: Integral extensions are finitely generated modules

A,BRCARBx1,,xnIB(A)L:L<,LMA=A[x1,,xn]\begin{align*} &\sphericalangle \\ & A, B \in \mathcal R^{\mathcal {C}} \\ & A \subseteq_R B \\ & x_1, \ldots, x_n \in \mathfrak I_B(A) \\ \hline \\ & \exists L: |L| \lt \infty, \lang L \rang_{M_A}=A[x_1, \ldots, x_n] \end{align*}

Proof

By induction: when n=1n=1 follows from (2.7.15.b)(2.7.15.b).

When n>1n>1 define Ak:=A[x1,,xk]A_k:=A[x_1, \ldots, x_k]. Then An=An1[xn]A_n=A_{n-1}[x_n]. Since xnIAn(An1)x_n \in \mathfrak I_{A_n}(A_{n-1}) by (2.7.15.b)(2.7.15.b) AnA_n is a finitely generated An1A_{n-1}-module. Since in turn An1A_{n-1} is finitely generated over AA, we finish the proof.

\square

Proposition 2.7.17: Integral closure is a ring

A,BRCARBIB(A)RC\begin{align*} &\sphericalangle \\ &A, B \in \mathcal R^{\mathcal C} \\ &A \subseteq_R B \\ \hline \\ &\mathfrak I_B(A) \in \mathcal R^{\mathcal C} \end{align*}

Proof

Consider x,yIB(A)x, y \in \mathfrak I_B(A). By (2.7.16)(2.7.16) A[x,y]A[x, y] is a finitely generated AA-module. A[x+y],A[xy]A[x,y]RBA[x+y], A[xy] \subseteq A[x,y] \subseteq_R B by (2.7.15.c)(2.7.15.c) x+y,xyIB(A)x+y, xy \in \mathfrak I_B(A).

\square

Valuation rings

def: Valuation ring

VRIDxF(V):(xV)(x1V)VRVvaluation ring\begin{align*} &\sphericalangle \\ &V \in \mathcal R^{\mathcal {ID}} \\ &\forall x \in \mathfrak F(V)^*: (x \in V) \vee (x^{-1} \in V) \\ \hline \\ &V \in \mathcal R^{\mathcal V} - \text{valuation ring} \end{align*}

Proposition 2.7.18: Valuation ring properties

VRVVRLB:VRBRF(V)    BRVIF(V)(V)=V\begin{align*} &\sphericalangle \\ &V \in \mathcal R^{\mathcal {V}} \\ \hline \\ &\begin{align*} &V \in \mathcal R^{\mathcal L} \hspace{0.5cm} \tag{a}\\ &\forall B: V \subseteq_R B \subseteq_R \mathfrak F(V) \implies B \in \mathcal R^{\mathcal V} \hspace{0.5cm} \tag{b}\\ &\mathfrak I_{\mathfrak F(V)}(V) = V \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

Define I:=VVI:=V \setminus V^*. Let's check that IRVI \lhd_R V:

0I    I0 \in I \implies I \ne \empty aV,xI    xV    x1V    a(ax)1V    (ax)1V    VRVaxVV    axIa \in V, x\in I \implies x \notin V^* \implies x^{-1} \notin V \implies \\ a(ax)^{-1} \notin V \implies (ax)^{-1} \notin V \overset{V \in \mathcal R^{\mathcal V}}\implies ax \in V \setminus V^* \implies ax \in I x,yI{0}:(xy1V)(yx1V)    {xy1V    xy=(1xy1)VyIyx1V    xy=(1yx1)VxIxI:x=x+0=0+xI\forall x, y \in I \setminus \{0\}: (xy^{-1} \in V) \vee (yx^{-1} \in V) \implies \\ \begin{cases} xy^{-1} \in V \implies x-y = \underbrace{(1-xy^{-1})}_{\in V}\cdot y \in I \\ yx^{-1} \in V \implies x-y = \underbrace{(1-yx^{-1})}_{\in V} \cdot x \in I \end{cases} \\ \forall x \in I: x=x+0=0+x \in I

Thus we proved IRVI \lhd_R V and by (2.7.1)(2.7.1) VRLV \in \mathcal R^{\mathcal L}.

b.

Obviously F(V)=F(B)\mathfrak F(V)=\mathfrak F(B).

xF(B),x0    xF(V)    (xV)(x1V)    (xB)(x1B)\forall x \in \mathfrak F(B), x \ne 0 \implies x \in \mathfrak F(V) \implies \\ (x \in V) \vee (x^{-1} \in V) \implies \\ (x \in B) \vee (x^{-1} \in B)

c.

Obviously VIF(V)(V)V \subseteq \mathfrak I_{\mathfrak F(V)}(V). Let's prove VIF(V)(V)V \supseteq \mathfrak I_{\mathfrak F(V)}(V).

Fix some xIF(V)(V)x \in \mathfrak I_{\mathfrak F(V)}(V). We have

xn+v1xn1++vn=0x^n + v_1x^{n-1} + \ldots + v_n = 0

If xVx \in V then we're done. Otherwise x1Vx^{-1} \in V. Multiplying the equation above by x1nx^{1-n} we have:

x=v1v2x1vnx1nVx = -v_1-v_2x^{-1}-\ldots-v_nx^{1-n} \in V

\square

def: Discrete valuation

FFv:FZv(xy)=v(x)+v(y)v(x+y)min(v(x),v(y))vV(F)discrete valuation\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &v: F^* \to \Z\\ &v(xy)=v(x)+v(y) \\ &v(x+y) \ge \min(v(x),v(y)) \\ \hline \\ &v \in \mathcal V(F) - \text{discrete valuation} \end{align*}

def: Valuation ring of a field

FFvV(F)Fv+:={xF:v(x)0}Fv+valuation ring of a field F\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &v \in \mathcal V(F) \\ &F_v^+:=\{x \in F: v(x) \ge 0\} \\ \hline \\ &F_v^+ - \text{valuation ring of a field } F \end{align*}

def: Discrete valuation ring

BRIDvV(F(B))B=F(B)v+BRDVR\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &\exists v \in \mathcal V(\mathfrak F(B)) \\ & B = \mathfrak F(B)_v^+ \\ \hline \\ &B \in \mathcal R^{\mathcal {DVR}} \end{align*}

Proposition 2.7.19: Discrete valuation ring is a valuation ring

VRDVR    VRVV \in \mathcal R^{\mathcal {DVR}} \implies V \in \mathcal R^{\mathcal V}

Proof

First note that v(1)=v(11)=v(1)+v(1)    v(1)=0v(1) = v(1\cdot 1)=v(1)+v(1) \implies v(1) =0. Additionally 0=v(1)=v(xx1)=v(x)+v(x1)0= v(1) = v(xx^{-1})=v(x)+v(x^{-1})

Consider some xF(V)x \in \mathfrak F(V)^*. If v(x)0v(x) \ge 0 then xVx \in V and we're done. If v(x)<0v(x)<0 then v(x1)=v(x)>0v(x^{-1})=-v(x) > 0, so x1Vx^{-1} \in V.

\square

Proposition 2.7.20: Discrete valuation ring is a local noetherian domain of dimension 1

DRDVRDRLDRNdimD=1\begin{align*} &\sphericalangle \\ &D \in \mathcal R^{\mathcal {DVR}} \\ \hline \\ &\begin{align*} & D \in R^{\mathcal L}\hspace{0.5cm} \tag{a}\\ & D \in R^{\mathcal N}\hspace{0.5cm} \tag{b}\\ & \dim D = 1 \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

Exercise

Proposition 2.7.21: Discrete valuation ring criteria

ARNRLRIDdimA=1mM(A)F:=A/mFThe following are equivalent:ARDVRIF(A)(A)=AxA:xI=mdimFm/m2=1IRA,I{0},IA:nN:I=mnxA:IRA,I{0},IA:nN:I=xnI\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal N} \cap \mathcal R^{\mathcal L} \cap \mathcal R^{\mathcal {ID}} \\ &\dim A = 1 \\ &\mathfrak m \in \mathfrak M(A) \\ &F:=A/\mathfrak m \in \mathcal F \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} & A \in \mathcal R^{\mathcal {DVR}} \hspace{0.5cm} \tag{a}\\ & \mathfrak I_{\mathfrak F(A)}(A)=A \hspace{0.5cm} \tag{b}\\ & \exists x \in A: \lang x \rang_I = \mathfrak m \hspace{0.5cm} \tag{c}\\ & \dim_F \mathfrak m / \mathfrak m^2=1 \tag{d}\\ & \forall I \lhd_R A, I \ne \{0\}, I \ne A: \exists n \in \N: I = \mathfrak m^n \hspace{0.5cm} \tag{e}\\ & \exists x \in A: \forall I \lhd_R A, I \ne \{0\}, I \ne A: \exists n \in \N: I = \lang x^n \rang_I \hspace{0.5cm} \tag{f}\\ \end{align*} \end{align*}

Proof

Before we start proving, let's make the following observations.

If we take arbitraty ideal IRA,I{0},IA\forall I \lhd_R A, I \ne \{0\}, I \ne A then by (2.7.5)(2.7.5) we have

I=PPI(A),IPP\sqrt{I}=\bigcap_{P \in \mathfrak P_I(A), I \subseteq P}P

Note that ImI \subseteq \mathfrak m because m\mathfrak m is the only maximal ideal in the ring. Next ARID    A/{0}RID    {0}PI(A)A \in \mathcal R^{\mathcal {ID}} \implies A/\{0\} \in R^{\mathcal {ID}} \implies \{0\} \in \mathfrak P_I(A). Since dimA=1\dim A = 1, every prime ideal {0}\ne \{0\} must be maximal. And since ARLA \in \mathcal R^{\mathcal L}, we have exactly one maximal ideal m\mathfrak m. So the only prime ideals in the ring are {0}\{0\} and m\mathfrak m. And so I=m\sqrt{I} = \mathfrak m. And so by (2.7.10)(2.7.10):

nN:mnI\begin{align*} & \exists n \in \N: \mathfrak m^n \subseteq I \tag{I}\\ \end{align*}

Next, we cannot have some nNn \in \N such that mn=mn+1\mathfrak m^n = \mathfrak m^{n+1}. Because if that's the case, by (2.7.14)(2.7.14) we have ARAA \in \mathcal R^{\mathcal A} so dimA=0\dim A = 0. But we know that dimA=1\dim A = 1. So

nN:mnmn+1\begin{align*} & \forall n \in \N: \mathfrak m^n \ne \mathfrak m^{n+1}\tag{II}\\ \end{align*}

(a)    (b)(a) \implies (b)

By (2.7.19)(2.7.19) we have ARVA \in \mathcal R^{\mathcal {V}}. So by (2.7.18.c)(2.7.18.c) IF(A)(A)=A\mathfrak I_{\mathfrak F(A)}(A)=A

(b)    (c)(b) \implies (c)

Take some aa:

am,a0 a \in \mathfrak m, a \ne 0

If aI=m\lang a \rang_I = \mathfrak m then we're done. Otherwise, by (I)(\text{I}) there exists some nn:

mnaI,mn1aI\mathfrak m^n \subseteq \lang a \rang_I, \mathfrak m^{n-1} \nsubseteq \lang a \rang_I

Let's choose some bb:

bmn1,baI b \in \mathfrak m^{n-1}, b \notin \lang a \rang_I

And define xx:

x:=abx:= \frac{a}{b}

Note that x1Ax^{-1} \notin A (since baIb \notin \lang a \rang_I and x1x^{-1} has aa in denominator) and so

x1IF(A)(A)x^{-1} \notin \mathfrak I_{\mathfrak F(A)}(A)

We know that mMA\mathfrak m \in \mathcal M_{A}. Additionally, mnmn+1    m{0}\mathfrak m^n \ne \mathfrak m^{n+1} \implies \mathfrak m \ne \{0\}. So if there's an element zA,z0:zm=0z \in A, z \ne 0: z\mathfrak m = 0 then wA,w0:zw=0\exists w \in A, w \ne 0: zw=0. But that contradicts to the fact that ARIDA \in \mathcal R^{\mathcal {ID}}. So we proved mMAF\mathfrak m \in \mathcal M^F_{A}.

Next, since bA,b0b \in A, b \ne 0 and mMAF\mathfrak m \in \mathcal M^F_{A} we have bm{0}    x1m{0}b \mathfrak m \ne \{0\} \implies x^{-1} \mathfrak m \ne \{0\}. Now if we assume that x1mmx^{-1}\mathfrak m \subseteq \mathfrak m then mMA[x1]F\mathfrak m \in \mathcal M^F_{A[x^{-1}]}. Also since ARNA \in \mathcal R^{\mathcal N} we know that m\mathfrak m is a finitely generated AA-module so by (2.7.15.d)(2.7.15.d) we would have x1IF(A)(A)x^{-1} \in \mathfrak I_{\mathfrak F(A)}(A) which is a contradiction. So we proved:

x1mmx^{-1}\mathfrak m \nsubseteq \mathfrak m

Notice that bmn1    bmmnaI=aAb \in \mathfrak m^{n-1} \implies b \mathfrak m \subseteq \mathfrak m^n \subseteq \lang a \rang_I = aA and so x1m=bamaAa=Ax^{-1}\mathfrak m = \frac{b}{a}\mathfrak m \subseteq \frac{aA}{a}=A so

x1mAx^{-1}\mathfrak m \subseteq A

x1mmx^{-1}\mathfrak m \nsubseteq \mathfrak m, x1mAx^{-1}\mathfrak m \subseteq A and m\mathfrak m- maximal ideal implies

x1m=A    m=Ax=xIx^{-1}\mathfrak m = A \implies \mathfrak m = Ax = \lang x\rang_I

On the final note, it's sort of not obvious that x=abAx = \frac{a}{b} \in A. Hoewever it is, since it generates mA\mathfrak m \subseteq A.

(c)    (d)(c) \implies (d)

Assuming M:=mMAM:=\mathfrak m \in \mathcal M_A, by (2.7.2.b)(2.7.2.b) we have dimFm/m21\dim_F \mathfrak m / \mathfrak m^2 \leq 1. By (II)(\text{II}) we have mm2\mathfrak m \ne \mathfrak m^2 and so dimFm/m2=1\dim_F \mathfrak m / \mathfrak m^2 = 1.

(d)    (e)(d) \implies (e)

Consider

IRA,I{0},IAI \lhd_R A, I \ne \{0\}, I \ne A

By (I)(\text{I}) we have

nN:mnI\exists n \in \N: \mathfrak m^n \subseteq I

Consider a factor ring A/mnA/\mathfrak m^n. Remember that we have 2 prime ideals in AA, namely {0}\{0\} and m\mathfrak m. Under the correspondence theorem (2.3.12)(2.3.12) the only proper ideal in A/mnA/\mathfrak m^n is ϕ(m)\phi(\mathfrak m) which is prime so dimA/mn=0\dim A/\mathfrak m^n=0 and A/mnRARLA/\mathfrak m^n \in \mathcal R^{\mathcal A} \cap \mathcal R^{\mathcal L}.

Next denote ϕ:AMAA/mn\phi: A \rightsquigarrow_{M_A} A / \mathfrak m^n - natural module homomorphism. If n=1n=1 then ϕ(m)=ϕ(m2)={0}\phi(\mathfrak m)=\phi(\mathfrak m^2)=\{0\}, so dimF(ϕ(m)/ϕ(m2))=0\dim_F(\phi(\mathfrak m)/\phi(\mathfrak m^2)) = 0. If n2n\ge2 then we can apply third isomorphism theorem for modules (2.6.6)(2.6.6) assuming M:=m,N:=m2,K:=mnM:=\mathfrak m, N: = \mathfrak m^2, K:=\mathfrak m^n so m/m2m/mnm2/mn=ϕ(m)/ϕ(m2)\mathfrak m/ \mathfrak m^2 \cong \frac{\mathfrak m / \mathfrak m^n}{\mathfrak m^2 / \mathfrak m^n} = {\phi(\mathfrak m)}/{\phi(\mathfrak m^2)} and conclude that dimF(ϕ(m)/ϕ(m2))=1\dim_F(\phi(\mathfrak m)/\phi(\mathfrak m^2)) = 1.

So we have dimF(ϕ(m)/ϕ(m2))1\dim_F(\phi(\mathfrak m)/\phi(\mathfrak m^2))\le 1. Now we can apply (2.7.13)(2.7.13) and get that ϕ(I)=ϕ(m)k\phi(I) = \phi(\mathfrak m)^k and so by taking ϕ1\phi^{-1} we have I=mkI = \mathfrak m^k.

(e)    (f)(e) \implies (f)

By (II)(\text{II}) mm2\mathfrak m \ne \mathfrak m^{2}, take xmm2x \in \mathfrak m \setminus \mathfrak m^2. We know that r:xI=mr\exists r: \lang x \rang_I = \mathfrak m^r. Since xm2x \notin \mathfrak m^2 it follows that r=1r = 1 and xI=m\lang x \rang_I = \mathfrak m. Finally IRA:I=mk=xkI\forall I \lhd_R A: I = \mathfrak m^k = \lang x^k \rang_I

(f)    (a)(f) \implies (a)

First note that xI=m\lang x \rang_I = \mathfrak m. Otherwise if xkI=m\lang x^k \rang_I = \mathfrak m then xIxkI=m\lang x \rang_I \supseteq \lang x^k \rang_I = \mathfrak m. Since xkAx^k \notin A^* and so xAx \notin A^* then xI=m\lang x \rang_I = \mathfrak m. So we established:

xI=m\lang x \rang_I = \mathfrak m

Next, by (II)(\text{II}) we have xkIxk+1I\lang x^k \rang_I \ne \lang x^{k+1} \rang_I. Consider some aAA{0}a \in A \setminus A^* \cup \{0\}, it follows that !kN:aI=xkI\exists! k \in \N: \lang a \rang_I = \lang x^k \rang_I. Define v(a):=kv(a):=k. For aA{0}a' \in A^* \cup \{0\} define v(a)=0v(a')=0. Next extend vv to F(A)\mathfrak F(A) by defining v(ab)=v(a)v(b)v(\frac{a}{b})=v(a)-v(b).

Let's prove that this valuation is well-defined.

First consider vv defined on AA

Consider some a,bA,aAa, b \in A, a \in A^*. Then abI=bI\lang ab \rang_I = \lang b \rang_I and so v(ab)=v(b)=0+v(b)=v(a)+v(b)v(ab)=v(b) = 0 + v(b) = v(a)+v(b).

Next, v(a)=0,v(b)0,v(a+b)0    v(a+b)0=min(v(a),v(b))v(a)=0, v(b) \ge 0, v(a+b) \ge 0 \implies v(a+b)\ge 0 = \min(v(a), v(b)).

Finally we need to prove valuation properties for elements a,bAAa, b \in A \setminus A^*. Assume a=xk\lang a \rang=\lang x^k \rang, b=xn\lang b \rang=\lang x^n \rang. Then ab=xn+k\lang ab \rang=\lang x^{n+k} \rang and we have v(ab)=v(a)+v(b)v(ab) = v(a) + v(b).

Next, by (2.4.6)(2.4.6) u,vA:a=uxk,b=vxn\exists u, v \in A^*: a = ux^k, b=vx^n. Assume knk \leq n, a+bI=uxk+vxnI=xk(1+u1vxnk)IxkI\lang a + b \rang_I=\lang ux^k + vx^n \rang_I=\lang x^k(1+u^{-1}vx^{n-k}) \rang_I \subseteq \lang x^k \rang_I. So we can see that v(a+b)k=min(k,n)=min(v(a),v(b))v(a+b) \ge k = \min(k, n) = \min(v(a), v(b)).

Now vv defined on F(A)\mathfrak F(A)

First, let's prove that it's well-defined. Consider ab=cd    ad=bc\frac{a}{b}=\frac{c}{d} \implies ad = bc:

v(a)+v(d)=v(ad)=v(bc)=v(b)+v(c)v(ab)=v(a)v(b)=v(c)v(d)=v(cd)v(a)+v(d)=v(ad)=v(bc)=v(b)+v(c) \\ v(\frac{a}{b}) = v(a) - v(b) = v(c) - v(d) = v(\frac{c}{d}) \\

Next let's prove valuation properties:

v(abcd)=v(acbd)=v(ac)v(bd)=v(a)+v(c)v(b)v(d)=v(a)v(b)+v(c)v(d)=v(ab)+v(cd)v(\frac{a}{b}\frac{c}{d})=v(\frac{ac}{bd})=v(ac)-v(bd)= \\ v(a)+v(c)-v(b)-v(d)=v(a)-v(b)+v(c)-v(d)= \\ v(\frac{a}{b})+v(\frac{c}{d}) v(ab+cd)=v(ad+bc)v(bd)min(v(ad),v(bc))v(bd)==min(v(ad)v(bd),v(bc)v(bd))=min(v(ab),v(cd))v(\frac{a}{b}+\frac{c}{d})=v(ad+bc)-v(bd) \ge \min(v(ad), v(bc)) -v(bd) = \\ =\min(v(ad)-v(bd), v(bc)-v(bd)) = \min(v(\frac{a}{b}), v(\frac{c}{d}))

So we just proved that vv is a valid valuation on F(A)\mathfrak F(A).

Finally, we need to prove that A=B:={aF(A):v(a)0}A=B:=\{a \in \mathfrak F(A): v(a) \ge 0\}. ABA \subseteq B by definition of vv that requires every element of AA to have non-negative valuation. Now assume abB    v(ab)0\frac{a}{b} \in B \implies v(\frac{a}{b}) \ge 0. This implies v(a)v(b)    aIbI    abI    a=bx,xA    abAv(a) \ge v(b) \implies \lang a\rang_I \subseteq \lang b\rang_I \implies a \in \lang b\rang_I \implies a = bx, x \in A \implies \frac{a}{b} \in A.

\square.

Proposition 2.7.22: Discrete valuation ring has a unique discrete valuation up to a scaling factor

DRDVRv1,v2V(F(D))n1,n2N:aD:v1(a)n1=v2(a)n2\begin{align*} &\sphericalangle \\ &D \in \mathcal R^{\mathcal {DVR}} \\ &v_1, v_2 \in \mathcal V(\mathfrak F(D)) \\ \hline \\ &\exists n_1, n_2 \in \N: \forall a \in D: \frac{v_1(a)}{n_1}=\frac{v_2(a)}{n_2} \end{align*}

Proof

From (2.7.20)(2.7.20) we know that DRLRNRIDD \in \mathcal R^{\mathcal L} \cap R^{\mathcal N} \cap R^{\mathcal {ID}} and dimD=1\dim D = 1. Thus we can use all the properties of (2.7.21)(2.7.21).

Let xx be a generator from (2.7.21.f)(2.7.21.f). Define

n1:=v1(x),n2:=v2(x)n_1:=v_1(x), n_2:=v_2(x)

Note that:

vi(xr)=rvi(x)v_i(x^r)=rv_i(x)

Consider some aDa \in D, we know that aI=xrI\lang a \rang_I=\lang x^r \rang_I, so n2v1(a)=n2rv1(x)=n2rn1=n1rn2=n1rv2(x)=n1v2(a)n_2v_1(a) = n_2rv_1(x)=n_2rn_1=n_1rn_2=n_1rv_2(x)=n_1v_2(a).

\square

def: Uniformizer

DRDVRxIMI(D)xuniformizer\begin{align*} &\sphericalangle \\ &D \in \mathcal R^{\mathcal {DVR}} \\ &\lang x \rang_I \in \mathfrak M_I(D)\\ \hline \\ &x - \text{uniformizer} \end{align*}
note

If we define valuation of uniformizer to be equal to 1 then this valuation is unique

Alternatively, if for any valuation there's an element with v(x)=1v(x)=1 then all these valuations are the same.

Localizations

def: Ring of fractions

BRIDS:{1}SSSBS1B:={bs:bB,sS}\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal ID} \\ &S: \{1\} \subseteq S \cdot S \subseteq S \subseteq B \\ \hline \\ &S^{-1}B:=\{\frac{b}{s}: b \in B, s \in S\} \end{align*}
note

Remember, as\frac{a}{s} is defined as fractions equivalence relation class.

note

S:=B0    S1B=F(B)S:=B \setminus 0 \implies S^{-1}B = \mathfrak F(B)

Proposition 2.7.23: Complement of a prime ideal is multiplicatively closed

BRIDIRBIPI(B)    {1}(BI)2BIB\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal ID} \\ &I \lhd_R B \\ \hline \\ &I \in \mathfrak P_I(B) \iff \{1\} \subseteq (B \setminus I)^2 \subseteq B \setminus I \subseteq B \end{align*}

Proof

    \implies

First, let's prove that (BI)2BI(B \setminus I)^2 \subseteq B \setminus I. Consider x,yBIx, y \in B \setminus I or equivalently x,yIx, y \notin I:

(xI)(yI)    IPI(B)xyI    xyBI(x \notin I) \wedge (y \notin I) \overset{I \in \mathfrak P_I(B)}\implies xy \notin I \implies \\ xy \in B \setminus I \\

Next we prove that {1}(BI)2\{1\} \subseteq (B \setminus I)^2:

IPI(B)    (2.4.6)1I    1B/I    1(B/I)2 I \in \mathfrak P_I(B) \overset{(2.4.6)}\implies 1 \notin I \implies 1 \in B/I \implies 1 \in (B/I)^2

    \impliedby

First note that if xyBIxy \notin B \setminus I then either xBIx \notin B \setminus I or yBIy \notin B \setminus I. Otherwise if they are both in BIB \setminus I then by (BI)2BI(B \setminus I)^2 \subseteq B \setminus I we'll have xyBIxy \in B \setminus I which is a contradiction. So we have:

x,yI:xyI    xyBI    (xBI)(yBI)    (xI)(yI)\forall x, y \in I: xy \in I \implies xy \notin B \setminus I \implies \\ (x \notin B \setminus I) \vee (y \notin B \setminus I) \implies (x \in I) \vee (y \in I) \\ {1}BI    1I    IB\{1\} \subseteq B \setminus I \implies 1 \notin I \implies I \subset B

\square

def: Ring localization

BRIDPPI(B)    (2.7.23){1}(BP)2BPBBP:=(BP)1B\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal ID} \\ &P \in \mathfrak P_I(B) \overset{(2.7.23)}\implies \{1\} \subseteq (B\setminus P)^2 \subseteq B\setminus P \subseteq B \\ \hline \\ &B_P:=(B \setminus P)^{-1}B \\ \end{align*}

Proposition 2.7.24: Ring localization is a local ring

BRIDPPI(B)BPRL\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &P \in \mathfrak P_I(B) \\ \hline \\ &B_P \in \mathcal R^{\mathcal {L}} \end{align*}

Proof

Consider a subset IBPI \subseteq B_P:

I:={as:aP,sBP}I:=\{\frac{a}{s}: a \in P, s \in B\setminus P\}

Let's prove IRBPI \lhd_R B_P:

Ias,btI:asbt=atbsPstBPII\ne \empty \\ \forall \frac{a}{s}, \frac{b}{t} \in I: \frac{a}{s} -\frac{b}{t}= \frac{\overbrace{at-bs}^{\in P}}{\underbrace{st}_{\in B\setminus P}} \in I\\ btBP,asI:btas=abstI\forall \frac{b}{t} \in B_P, \frac{a}{s} \in I: \frac{b}{t}\frac{a}{s} = \frac{ab}{st} \in I

Next, let's note that BP={as:aBP,sBP}B_P^* = \{\frac{a}{s}: a \in B\setminus P, s \in B\setminus P\}, so I=BPBPI = B_P \setminus B_P^*. By (2.7.1)(2.7.1) we finish the proof.

\square

def: Ring localization at point

BRIDBa:={an,nN{0}}1B\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &B_a:=\{a^n, n \in \N \cup \{0\}\}^{-1}B \end{align*}

Proposition 2.7.25: Ring localizations intersection = Ring

BRIDBMMI(B)BMBPPI(B)BP\begin{align*} &\sphericalangle \\ & B \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &\begin{align*} &B \cong \bigcap_{M \in \mathfrak M_I(B)}B_M \hspace{1cm} \tag{a}\\ &B \cong \bigcap_{P \in \mathfrak P_I(B)}B_P \hspace{1cm} \tag{b}\\ \end{align*} \end{align*}

Proof

Before we begin the proof, let's consider an ideal II and homomorphism: ϕ:BBI,bb1\phi: B \to B_I, b \mapsto \frac{b}{1}. It's easy to check that it's indeed a homomorphism with kerϕ={0}\ker \phi = \{0\}, so Bϕ(B)B \cong \phi(B). In the proof we'll assume that BBIB \subseteq B_I for any ideal II. Strictly speaking this would mean that ϕ(B)BI\phi(B) \subseteq B_I but we'll just write BB instead thinking about fractions with 11 denominator.

a.

Obviously

MMI(B):BBMF(B)    BMMI(B)BMF(B)\forall M \in \mathfrak M_I(B): B \subseteq B_M \subseteq \mathfrak F(B) \implies B \subseteq \bigcap_{M \in \mathfrak M_I(B)}B_M \subseteq \mathfrak F(B)

Now let's prove BMMI(B)BMB \supseteq \bigcap_{M \in \mathfrak M_I(B)}B_M. Fix some bMMI(B)BMb \in \bigcap_{M \in \mathfrak M_I(B)}B_M and consider an ideal quotient Ib:={xB:xbB}I_b:=\{x \in B: xb \in B\}. Note it's very similar to (B:b)(B: b) and we can prove very similarly to (2.7.7)(2.7.7) that IbRBI_b \lhd_R B.

Note that bB    1Ib    Ib=Bb \in B \iff 1 \in I_b \iff I_b = B. So all we need to prove is Ib=BI_b = B. Assume otherwise IbBI_b \ne B:

(2.3.5)    MMI(B):IbMbMMI(B)BM    bBM(2.3.5) \implies \exists M \in \mathfrak M_I(B): I_b \subseteq M \\ b \in \bigcap_{M \in \mathfrak M_I(B)}B_M \implies b \in B_M

If b=rsb = \frac{r}{s} that means that rB,sBMr \in B, s \in B \setminus M. On the other hand sb=r1Bsb = \frac{r}{1} \in B so sIbM    sMs \in I_b \subseteq M \implies s \in M. This is a contradiction.

So we proved Ib=B    bBI_b = B \implies b \in B. Since bb was arbitrary in MMI(B)BM\bigcap_{M \in \mathfrak M_I(B)}B_M, we proved BMMI(B)BMB \supseteq \bigcap_{M \in \mathfrak M_I(B)}B_M.

b.

Each prime ideal PP is contained in some maximal ideal MM. Because BPBMB_P \supseteq B_M, the intersection by all prime ideals contained in MM is exactly BMB_M. So PPI(B)BP=MMI(B)BM\bigcap_{P \in \mathfrak P_I(B)}B_P = \bigcap_{M \in \mathfrak M_I(B)}B_M and using (a)(a) we finish the proof.

\square

Graded rings

def: Graded ring

BRCnN{0}:BnG,+Bm,nN{0}:BmBnBm+nB=n0BnBRGR,Bgraded ring\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal C} \\ &\forall n \in \N \cup \{0\}: B_n \subseteq_{G,+} B \\ &\forall m,n \in \N \cup \{0\}: B_mB_n \subseteq B_{m+n} \\ &B=\bigoplus_{n\ge 0}B_n \\ \hline \\ &B \in \mathcal R^{\mathcal {GR}}, B - \text{graded ring} \end{align*}
note

Since B0B0B0B_0 B_0 \subseteq B_0, it follows B0RBB_0 \subseteq_R B and B0BnBnB_0B_n \subseteq B_n so BnMB0B_n \in \mathcal M_{B_0}.

Example: Graded ring of polynomials

The example that we'll often use is graded ring of polynomials R[x1,,xk]R[x_1, \ldots, x_k ] where RnR_n is a group of polynomials of degree nn. Note that each polynomial is RnR_n is a homogeneous degree nn and Rn={x1r1xkrk,r1++rk=n}GR_n = \lang \{x_1^{r_1}\ldots x_k^{r_k}, r_1 + \ldots + r_k = n\} \rang_G .

def: Graded subring

BRGRARBA=n0(ABn)AgrB,Agraded subring of B\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {GR}} \\ &A \subseteq_R B \\ & A = \bigoplus_{n\ge 0}(A \cap B_n) \\ \hline \\ &A \subseteq_{gr} B, A - \text{graded subring of }B \end{align*}

def: Graded homomorphism

A,BRGRϕ:ARBϕ(An)Bnϕ:AgrB\begin{align*} &\sphericalangle \\ &A, B \in \mathcal R^{\mathcal {GR}} \\ & \phi: A \rightsquigarrow_R B \\ & \phi(A_n) \subseteq B_n \\ \hline \\ & \phi: A \rightsquigarrow_{gr} B \\ \end{align*}

def: Associated graded ring

ARCIRAgrI(A):=n=0In/In+1:grI(A)×grI(A)grI(A),(x+In)(y+Im)xy+Im+ngrI(A)associated graded ring\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal {C}} \\ &I \lhd_R A\\ &gr_I(A):=\bigoplus_{n=0}^{\infty}I^n/I^{n+1} \\ &\cdot: gr_I(A) \times gr_I(A) \to gr_I(A), \\ &(x+ I^{n})(y + I^{m}) \mapsto xy+I^{m+n}\\ \hline \\ &gr_I(A) - \text{associated graded ring} \end{align*}
note

In this definition we assume I0:=AI^0 := A

Proposition 2.7.26: Associated graded ring for maximal ideal

NRNRLdimN=dmMI(N)F:=N/mThe following are equivalent:grm(N)grF[x1,,xd]dimFm/m2=dm1,,mdN:m1,,mdI=m\begin{align*} &\sphericalangle \\ &N \in \mathcal R^{\mathcal N} \cap \mathcal R^{\mathcal L} \\ &\dim N = d \\ &\mathfrak m \in \mathfrak M_I(N) \\ &F:= N / \mathfrak m \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} & gr_\mathfrak{m}(N) \cong_{gr} F[x_1, \ldots, x_d]\hspace{0.5cm} \tag{a}\\ & \dim_F \mathfrak m/\mathfrak m^2 = d \hspace{0.5cm} \tag{b}\\ & \exists m_1, \ldots, m_d \in N: \lang m_1, \ldots, m_d \rang_I=\mathfrak m \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

The strict proof will require some additional propositions which we'd like to avoid proving. So we'd rather give a semi-formal proof.

(a)    (b)(a) \implies (b)

Denote P:=F[x1,,xd]P:=F[x_1, \ldots, x_d], note that it's a ring but we make it as part of a graded ring homomorphism. That means that we assume natural grading by polynomial degree. And so m/m2P1\mathfrak m/\mathfrak m^2 \cong P_1. P1P_1 is linear polynomials with dd indeterminates over the field FF so dimFm/m2=dimFP1=d\dim_F \mathfrak m/\mathfrak m^2 =\dim_F P_1= d.

(b)    (c)(b) \implies (c)

Consider (2.7.2)(2.7.2) and assume M:=mMA,I:=mM:=\mathfrak m \in \mathcal M_A, I:=\mathfrak m

(c)    (a)(c) \implies (a)

This part is for reference only, as it uses some notions like algebraic independence which we not covered yet and some propositions we have not intent to prove here. For more details see Michael Atiyah "Introduction To Commutative Algebra", Proposition 11.22.

We can make an isomorphism ϕ:F[m1,,md]grm(N)\phi: F[m_1, \ldots, m_d] \to gr_\mathfrak{m}(N). It splits a polynomial in m1,,mdm_1, \ldots, m_d into homogeneous parts and then each homogeneous part of degree nn is mapped into mn/mn+1\mathfrak m^n / \mathfrak m^{n+1}. We can finish the proof using auxiliary fact that if some elements generate maximal ideal (or more generally m\mathfrak m-primary ideal) then they are algebraically independent over F=A/mF = A / \mathfrak m, so they will be intederminates in this ring as stated in (a)(a).