Skip to main content

2.4 Rings taxonomy

Rings can have different structures and properties because they use two operations: addition and multiplication. The diagram below shows different kinds of rings and how they fit together. We're going to look at and define a few of these types of rings, that will be useful in our discussions.

Rings taxonomy Rings taxonomy

Commutative rings

def: Commutative ring

AR1x,yA:xy=yxARC(A is an commutative ring)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^1 \\ &\forall x, y \in A: x\cdot y = y \cdot x \\ \hline \\ &A \in \mathcal R^{\mathcal C} \,\,\, (A \text { is an commutative ring}) \end{align*}
note

Here we assume that commutative ring necessary has an identity. Some textbooks don't assume that and some do.

Example 3: Commutative ring

A ring Z\Z is an example of Commutative ring.

Example 4: Non-commutative ring

A ring of 2x2 matrices over real numbers under matrix ++ and \cdot is a ring but it's not commutative.

def: a divides b

ARCa,bA,cA:b=acab(a divides b)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &a, b \in A, \exists c \in A: b = ac\\ \hline \\ &a \mid b \,\,\,(a\text{ divides } b) \end{align*}

def: Prime element

ARCpA{0}:(pab    (pa)(pb))rP(A)(r is a prime in A)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &p \in A \setminus \{0\}: (p\mid ab \implies (p\mid a) \vee(p\mid b)) \\ \hline \\ &r \in \mathfrak P(A)\,\,\, (r \text{ is a prime in } A) \end{align*}

Proposition 2.4.1 Prime element and Prime ideal

ARCpApP(A)    pIPI(A)\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &p \in A \\ \hline \\ &p \in \mathfrak P(A) \iff \lang p \rang_I \in \mathfrak P_I(A) \end{align*}

Proof

pP(A)    (pab    (pa)(pb))    (zA:ab=pz    (xA:p=ax)(yA:p=by))    (abpI    (apI)(bpI))p \in \mathfrak P(A) \iff (p \mid ab \implies (p \mid a) \vee (p \mid b) ) \iff \\ (\exists z \in A: ab = pz \implies (\exists x \in A: p=ax) \vee (\exists y \in A: p=by)) \iff \\ (ab \in \lang p \rang_I \implies (a \in \lang p \rang_I)\vee(b \in \lang p \rang_I))

\square

Proposition 2.4.2 Finitely generated ideal explicit form

RRCSR,S={a1,,ak}SI={r1a1++rkak,riR}\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal C} \\ &S \subseteq R, S = \{a_1, \ldots, a_k\} \\ \hline \\ &\lang S \rang_I =\{r_1a_1+\ldots+r_ka_k, r_i \in R\} \end{align*}

Proof

Denote I={r1a1++rkak,riR}I=\{r_1a_1+\ldots+r_ka_k, r_i \in R\}. First, let's prove that IRR:I \subseteq_R R:

Is1,s2I:s1s2=r1,1a1++rk,1akr2,1a1r2,kak==r3,1a1++r3,kakIrR,sI:rs=rr1a1++rrkakII \ne \empty \\ \forall s_1, s_2 \in I: s_1 - s_2 = r_{1,1}a_1+\ldots+r_{k, 1}a_k - r_{2, 1}a_1-\ldots-r_{2, k}a_k = \\ =r_{3, 1}a_1+\ldots+r_{3, k}a_k \in I \\ \forall r \in R, s \in I:rs=rr_1a_1+\ldots+rr_ka_k \in I

By (2.3.3)(2.3.3): IRRI \subseteq_R R. Note that the last equation additionally proves that rIIrI \subseteq I. The fact that RRCR \in \mathcal R^{\mathcal C} implies IrII r \subseteq I as well. Thus, IRRI \lhd_R R.

Finally it's obvious that SIS \subseteq I and any ideal containing SS must at least contain II (riair_ia_i must be in this ideal and thus their sums as well).

\square

Integral domains

def: Integral domain

BRCx,yB{0}:xy0BRID(B is an integral domain)\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal C} \\ &\forall x, y \in B \setminus \{0\}: x\cdot y \ne 0 \\ \hline \\ &B \in \mathcal R^{\mathcal{ID}} \,\,\, (B \text { is an integral domain}) \end{align*}

Example 5: Integral domain

A ring Z\Z is obviously an intergral domain, since there are no integers in Z{0}\Z \setminus \{0\} that can have a 00 product.

Example 6: Non-integral domain

Z6RC,Z6RID\Z_6 \in \mathcal R^{\mathcal C}, \Z_6 \notin \mathcal R^{\mathcal{ID}} since 23=0(mod6)2 \cdot 3 = 0 \pmod 6.

Proposition 2.4.3 Cancellation law

BRIDa,b,cB:ab=ac    (a=0)(b=c)\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal{ID}} \\ \hline \\ &\forall a, b, c\in B: ab=ac \implies (a=0) \vee(b=c) \end{align*}

Proof

ab=ac    a(bc)=0    (a=0)(bc=0)ab=ac \implies a(b-c)=0 \implies (a=0)\vee(b-c=0)

\square

Proposition 2.4.4 Finite integral domain is a field

BRIDB<aB{0}:bB:ab=1\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal{ID}} \\ &|B| < \infty \\ \hline \\ &\forall a \in B \setminus \{0\}: \exists b \in B: ab = 1 \end{align*}

Proof

aB{0},f:BB,xax    (2.4.3)f:B11B    B=f(B)    f(B)BB=f(B)    f:BB    bB:ab=1\forall a \in B \setminus \{0\}, f: B \to B, x \mapsto ax \overset{(2.4.3)}{\implies} f: B\overset{1-1}{\to} B \implies \\ |B|=|f(B)| \overset{f(B) \subseteq B}{\implies}\\ B = f(B) \implies f: B \leftrightarrow B \implies \exists b \in B: ab = 1

\square

Proposition 2.4.5 Characteristic is prime or 0

BRID(char B=0)(char BP)\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal ID} \\ \hline \\ &(\text{char }B=0)\vee(\text{char }B \in \mathfrak P) \end{align*}

Proof

char B>0,char BP    char B=n=ab,1<a,b<n    0=n1=(a1)(b1)    BRID(a1=0)(b1=0)    (2.3.2)char B<n\text{char } B > 0, \text{char } B \notin \mathfrak P \implies \\ \text{char } B = n = ab, 1 < a, b < n \implies \\ 0=n\cdot1 = (a\cdot 1)(b\cdot 1) \overset{B \in \mathcal R^{\mathcal ID}}\implies \\(a\cdot 1 = 0) \vee (b\cdot 1 = 0) \overset{(2.3.2)}\implies \text{char } B < n

Thus, (char B=0)(char BP)(\text{char }B=0)\vee(\text{char }B \in \mathfrak P)

\square

def: Unit

RR1uR:vR:uv=vu=1uR(u is a unit)\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &u \in R: \exists v \in R: u \cdot v=v \cdot u=1 \\ \hline \\ &u \in R^* \,\,\,(u\text{ is a unit}) \end{align*}

def: Irreducible element

BRIDrB(B{0}),(r=uv    (uB)(vB))rB(r is an irreducible element of B)\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &r \in B \setminus (B^* \cup \{0\}), (r = uv \implies (u \in B^*) \vee(v \in B^*)) \\ \hline \\ &r \in B^{-} \,\,\, (r \text{ is an irreducible element of } B) \end{align*}

def: Reducible element

BRIDr,s,tB(B{0}):r=strB+reducible\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &r, s, t \in B \setminus (B^* \cup \{0\}): r = st \\ \hline \\ &r \in B^+ - \text{reducible} \end{align*}
note

Any element of integral domain is either 0, unit, reducible or irreducible. Thus B={0}BB+BB = \{0\} \cup B^* \cup B^+ \cup B^- and all sets are disjoint.

In theory we could define units, reducible and irreducible elements for commutative rings, however in this case we won't have this neat property as commutative ring can have zero divisors.

note

The other way to think about reducible and irreducible is as follows: consider a subset of non-zero, non-invertible elements of BB. Each element in this set either a product of two elements from itself (reducible) or not (irreducible)

Proposition 2.4.6 Units, divisibility and ideals

BRIDa,bB{0}IRBab    bIaIuB:b=au    aI=bIBI    I=B\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal{ID}} \\ &a, b \in B \setminus \{0\} \\ &I \lhd_R B \\ \hline \\ &\begin{align*} & a \mid b \iff \lang b \rang_I \subseteq \lang a \rang_I \tag{a}\\ & \exists u \in B^*: b = au \iff \lang a \rang_I = \lang b \rang_I \hspace{1cm} \tag{b}\\ & B^* \cap I \ne \empty \iff I = B \tag{c}\\ \end{align*} \end{align*}

Proof

a.

    \implies

ab    cB:b=ac    xbI:rB:x=rb=rac=rcaaIa \mid b \implies \exists c \in B: b = ac \implies \\\forall x \in \lang b \rang_I: \exists r \in B: x = rb=rac=rca \in \lang a \rang_I \\

    \impliedby

bIaI    baI    rB:b=ra    ab\lang b \rang_I \subseteq \lang a \rang_I \implies b \in \lang a \rang_I \implies \exists r \in B: b = ra \implies a \mid b

b.

    \implies

uB:b=au    (a)bIaIa=bu1    (a)aIbI\exists u \in B^*: b = au \overset{(a)}\implies \lang b \rang_I \subseteq \lang a \rang_I \\ a = bu^{-1} \overset{(a)}{\implies} \lang a \rang_I \subseteq \lang b \rang_I

    \impliedby

bI=aI    (a)ab,ba    x,yB:a=bx,b=ay=bxy    xy=1    u=yB,b=au\lang b \rang_I = \lang a \rang_I \overset{(a)}{\implies} a \mid b, b \mid a \implies \exists x, y \in B: a = bx, b = ay = bxy \implies \\ xy=1 \implies \exists u=y \in B^*, b = au

c.

    \implies

aBI    aa1I    1I    rR:r=r1I    R=Ia \in B^* \cap I \implies aa^{-1} \in I \implies 1 \in I \implies \\ \forall r \in R: r = r\cdot 1 \subseteq I \implies R = I

    \impliedby

R=I    1BI    BIR = I \implies 1 \in B^* \cap I \implies B^* \cap I \ne \empty

\square

note

The (d)(d) property holds for the rings with identity in general, not just for the integral domains.

Proposition 2.4.7 Prime is irreducible

BRIDpP(B)pB\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &p \in \mathfrak P(B) \\ \hline \\ &p \in B^- \end{align*}

Proof

pP(B)    (2.4.1)pIPI(B)p=ab    abpI    (apI)(bpI){apI    rB:p=ab=prb    (2.4.3)rb=1    bBbpI    rB:p=ab=arp    (2.4.3)ar=1    aBp \in \mathfrak P(B) \overset{(2.4.1)}{\implies} \lang p \rang_I \in \mathfrak P_I(B) \\ p = ab \implies ab \in \lang p \rang_I \implies (a \in \lang p \rang_I) \vee (b \in\lang p \rang_I) \\ \begin{cases} a \in \lang p \rang_I \implies \exists r \in B:p = ab=prb \overset{(2.4.3)}{\implies} rb = 1 \implies b \in B^* \\ b \in \lang p \rang_I \implies \exists r \in B:p = ab=arp \overset{(2.4.3)}{\implies} ar = 1 \implies a \in B^* \end{cases}

\square

Proposition 2.4.8 Factor ring by prime ideal is an integral domain

RRCIRRIPI    R/IRID\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal C} \\ &I \lhd_R R \\ \hline \\ &I \in \mathfrak P_I \iff R/I \in \mathcal R^{\mathcal{ID}} \end{align*}

Proof

    \implies

a+I,b+IR/I:(a+I)(b+I)=I    ab+I=I    abI    IPI(aI)(bI)    (a+I=I)(b+I=I)\forall a + I, b + I \in R/I: (a+I)(b+I)=I \implies ab+I=I \implies \\ ab \in I \overset{I \in \mathfrak P_I}{\implies} (a \in I) \vee (b \in I) \implies (a+I = I) \vee(b+I = I)

    \impliedby

a,bR:abI    I=ab+I=(a+I)(b+I)    R/IRID(a+I=I)(b+I=I)    (aI)(bI)\forall a, b \in R:ab \in I \implies I= ab+I = (a+I)(b+I) \overset{ R/I \in \mathcal R^{\mathcal{ID}}}{\implies} \\ (a+I=I)\vee(b+I=I) \implies (a \in I)\vee(b \in I)

\square

Noetherian rings

def: Noetherian ring

NRCJiIN:J1J2:n0:nn0:Jn=Jn0NRN(R is a noetherian ring)\begin{align*} &\sphericalangle \\ &N \in \mathcal R^{\mathcal {C}} \\ &\forall J_i \lhd_I N: J_1 \subseteq J_2 \subseteq \ldots: \exists n_0: \forall n \ge n_0: J_n=J_{n_0} \\ \hline \\ &N \in \mathcal R^{\mathcal {N}} \,\,\, (R \text{ is a noetherian ring}) \end{align*}

Proposition 2.4.9 Ideals are finitely generated

NRN    IIN:SN,S<:I=SIN \in \mathcal R^{\mathcal {N}} \iff \forall I \lhd_I N: \exists S \subseteq N, |S| < \infty: I = \lang S \rang_I

Proof

    \implies

Consider IRNI \lhd_R N and X:={JRI,J=j1,,jkR}X:= \{J \lhd_R I, J=\lang j_1, \ldots, j_k\rang_R\} - the set of all finitely generated ideals contained in II. We want to prove that IXI \in X, so it's finitely generated.

Obviously, XX \ne \empty.

Assume JX:KX:KJ\forall J \in X: \exists K \in X: K \supset J. That would imply that we can take and ideal J1J_1, then J2:=KJ1J_2:=K \supset J_1, then J3:=KJ2J_3:=K \supset J_2, so we build a sequence J1J2J3J_1 \subset J_2 \subset J_3 \subset \ldots which never stabilizes and contradicts NRNN \in \mathcal R^{\mathcal {N}}. So we have

JX:KX:KJ\exists J \in X: \forall K \in X: K \subseteq J

Assume JIJ \ne I. Since JXJ \in X, by definition of XX we have JIJ \subseteq I. So JIJ \subset I and aIJ\exists a \in I \setminus J. Consider an ideal L:=aI+JL:=\lang a \rang_I+J. LL is finitely generated and LIL \subseteq I, so LXL \in X. On the other hand LJL \supset J. But this is a contradiction to the definition of JJ. Thus, J=IJ=I and so II is finitely generated.

    \impliedby

Consider J1J2J_1 \subseteq J_2 \subseteq \ldots and J:=iJiJ:=\cup_iJ_i. Let's prove that JJ is ideal:

Ja,bJ    aJi,bJk    ((ab)Ji)((ab)Jk)    abJrN,aJ    aJi,raJi    raJ.J \ne \empty \\ a, b \in J \implies a \in J_i, b \in J_k \implies \\ ((a - b) \in J_i)\vee((a - b) \in J_k) \implies a-b \in J \\ r \in N, a \in J \implies a \in J_i, ra \in J_i \implies ra \in J.

Since by our assumption every ideal is finitely generated, J=a1,,akIJ=\lang a_1, \ldots, a_k\rang_I. If aiJnia_i \in J_{n_i}, define n:=max1iknin:=\max_{1\le i \le k}n_i. Then i:1ik:aiJn\forall i: 1 \le i \le k: a_i \in J_n. This immediately implies JnJJ_n\supseteq J. So we have kn:JJnJkJ\forall k \ge n: J\subseteq J_n \subseteq J_k \subseteq J, or Jk=JnJ_k=J_n.

\square

GCD domain

def: Greatest common divisor

RRIDa,b,dRdR:da,dbd1R:d1a,d1b    dd1gcd(a,b):=d\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal {ID}} \\ &a, b, d \in R \\ &d \in R: d \mid a, d \mid b \\ &\forall d_1 \in R: d_1\mid a, d_1\mid b \implies d\mid d_1 \\ \hline \\ &\gcd(a,b):=d \end{align*}

def: GCD domain

DRIDa,bD:gcd(a,b)DRGCD\begin{align*} &\sphericalangle \\ &D \in \mathcal R^{\mathcal {ID}} \\ &\forall a, b \in D: \exists \gcd(a, b)\\ \hline \\ &D \in \mathcal R^{\mathcal {GCD}} \end{align*}

Proposition 2.4.10: Divisibility is specified up to a unit

ARCa,bRuRab    uab    aub    uaub\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ & a, b \in R \\ & u \in R^* \\ \hline \\ &a \mid b \iff ua \mid b \iff a \mid ub \iff ua\mid ub \end{align*}

Proof

ab    b=ca=(cu1)ua    uabuab    b=cua    ub=(ucu)a    aubaub    ub=ca=(cu1)ua    uaubuaub    ub=cua    b=(u1cu)a    aba\mid b \implies b = ca=(cu^{-1})ua \implies ua \mid b \\ ua\mid b \implies b=cua \implies ub=(ucu)a \implies a \mid ub \\ a\mid ub \implies ub=ca=(cu^{-1})ua \implies ua \mid ub \\ ua \mid ub \implies ub = cua \implies b = (u^{-1}cu)a \implies a \mid b

\square

Proposition 2.4.11: GCD is unique up to a unit multiple

DRGCDa,b,d1,d2Dd1d2d1=gcd(a,b)d2=gcd(a,b)uD:d1=ud2\begin{align*} &\sphericalangle \\ &D \in \mathcal R^{\mathcal {GCD}} \\ &a, b, d_1, d_2 \in D \\ &d_1 \ne d_2 \\ &d_1 = \gcd(a, b) \\ &d_2 = \gcd(a, b) \\ \hline \\ &\exists u \in D^*: d_1 = ud_2 \end{align*}

Proof

d1d2    xD:d2=xd1d2d1    uD:d1=ud2d1=ud2=uxd1    1=ux    uDd_1 \mid d_2 \implies \exists x \in D: d_2 = xd_1 \\ d_2 \mid d_1 \implies \exists u \in D: d_1 = ud_2 \\ d_1 = ud_2=uxd_1 \implies 1 = ux \implies u \in D^*

\square

Example: GCD Domain

An example of a GCD domain is the ring of integers Z\Z. In Z\Z, the gcd of any two integers exists and is unique up to sign, which is a special case reflecting the more general property in GCD domains where gcds are unique up to units.

Example: Non-GCD Domain

Z[5]\Z[\sqrt{-5}] (a minimal ring containing Z\Z and 5\sqrt{-5}) is an example of non-gcd domain. We will not prove this, but the proof can be found here.

Unique factorization domains

def: Unique factorization domain

URID1.x(U(U{0})):a1,,anU:x=a1ak2.a1,,ak,b1,,bnU:a1ak=b1bn    n=k,σSn,u1,,unU:σ(ai)=uibiURUFD(Uunique factorization domain)\begin{align*} &\sphericalangle \\ &U \in R^{\mathcal{ID}} \\ 1.\,\,\, &\forall x \in (U \setminus (U^* \cup \{0\}) ): \exists a_1,\ldots,a_n \in U^{-}:x= a_1 \cdot\ldots \cdot a_k \\ 2.\,\,\, & \forall a_1,\ldots,a_k,b_1,\ldots,b_n \in U^- : a_1 \cdot\ldots \cdot a_k=b_1 \cdot\ldots \cdot b_n \implies \\ &n=k, \exists \sigma \in S_n, u_1, \ldots, u_n \in U^*: \sigma(a_i) = u_ib_i \\ \hline \\ &U \in \mathcal{R}^{\mathcal{UFD}} \,\,\,(U - \text{unique factorization domain} ) \end{align*}

A Unique Factorization Domain is basically a type of ring where the Fundamental Theorem of Arithmetic applies. This theorem states that every element in the ring can be broken down into a product of prime elements, and this breakdown is unique except for the order of the factors. In this context, 'prime' elements are referred to as irreducible elements. This is similar to the definition of prime numbers for integers, with the understanding that in the case of integers, the only units (elements that have a multiplicative inverse) are 1 and -1.

Example 7. Unique factorization domain

Z\Z, the ring of integers, is a Unique Factorization Domain (UFD) because the Fundamental Theorem of Arithmetic is valid in this ring.

Example 8. Non-unique factorization domain

Z[5]:={a+b5,a,bZ}\Z[\sqrt{-5}]:=\{a+b \sqrt{-5}, a, b \in \Z\} is an integral domain but not a unique factorization domain. The counter example is 6=23=(15)(1+5)6=2 \cdot 3=(1-\sqrt{-5})\cdot(1+\sqrt{-5}), where all factors are irreducible.

Proposition 2.4.12: Irreducible = prime

PRUFDpP    pP(A)\begin{align*} &\sphericalangle \\ &P \in \mathcal R^{\mathcal{UFD}} \\ \hline \\ &p \in P^{-} \iff &p \in \mathfrak P(A) \end{align*}

Proof

    \implies

Consider a,bP:paba, b \in P: p \mid ab. Since PRUFDP \in \mathcal R^{\mathcal{UFD}} we can factor out a=a1ak,b=b1bn,ai,biPa= a_{1}\cdot \ldots \cdot a_{k}\cdot, b= b_{1}\cdot \ldots \cdot b_{n}, a_i, b_i \in P^-. Then we have:

pab    ab=pr    a1akb1bn=prp \mid ab \implies ab = pr \implies a_{1}\cdot \ldots \cdot a_{k}\cdot b_{1}\cdot \ldots \cdot b_{n} = pr

Note that on the left-hand side we have irreducibles and on the right-hand side pp is irreducible and rr is some element. By the property (2) (unique factorization) of UFD, we know that pp is some factor on the left-hand side, multiplied by a unit. In other words:

(up=ai)(vp=bj),u,vP(up=a_i) \vee (vp=b_j), u, v \in P^*

If up=a1up=a_1, then p=a1u1p = a_1u^{-1} then a=u1pa2ak    paa = u^{-1}\cdot p\cdot a_2 \cdot \ldots \cdot a_k \implies p \mid a. Similarly up=aj    paup=a_j \implies p \mid a, vp=bj    pbvp=b_j \implies p \mid b.

    \impliedby

Follows from (2.4.7)(2.4.7)

\square

Proposition 2.4.13: UFD is a GCD domain

URUFDURGCD\begin{align*} &\sphericalangle \\ &U \in \mathcal R^{\mathcal {UFD}} \\ \hline \\ &U \in \mathcal R^{\mathcal {GCD}} \end{align*}

Proof

Take a,bUa, b \in U. We can factor a=up1e1pnen,b=up1f1pnfn,piU,ei,fi0a = up_1^{e_1}\ldots p_n^{e_n}, b = up_1^{f_1}\ldots p_n^{f_n}, p_i \in U^-, e_i, f_i \ge 0.

Define d:=p1min(e1,f1)pnmin(en,fn)d:=p_1^{\min(e_1, f_1)}\ldots p_n^{\min(e_n, f_n)}. Then it's obvious da,dbd \mid a, d \mid b.

Consider c:ca,cb,c=q1g1qkgk,qiUc: c \mid a, c \mid b, c = q_1^{g_1}\ldots q_k^{g_k}, q_i \in U^-.

qic,ca,cb    qia,qib    pi,qiPj:qi=pj    {q1,,qk}{p1,,pn}ca,cb    gimin(ei,fi)    dcq_i \mid c, c \mid a, c \mid b \implies q_i \mid a, q_i \mid b \overset{p_i, q_i \in \mathfrak P}{\implies} \exists j: q_i = p_j \implies \\ \{q_1, \ldots, q_k\} \subseteq \{p_1, \ldots, p_n\} \\ c \mid a, c \mid b \implies g_i \le \min(e_i, f_i) \implies d \mid c

\square

Principal ideal domains

def: Principal ideal domains

RRIDIRR:aR:I=aIRRPID(Rprincipal ideal domain)\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal{ID}} \\ &\forall I \lhd_R R: \exists a \in R: I=\lang a \rang_I \\ \hline \\ &R \in \mathcal R^{\mathcal {PID}} \,\,\, (R - \text{principal ideal domain}) \end{align*}

Example: Principal ideal domain

Z\Z is a principal ideal domain (PID). It follows from the fact that Z\Z is an euclidean domain and euclidean domain is a principal ideal domain (the proposition we will prove below)

Example: Non-principal ideal domain

Z[x]\Z[x] - a unique factorization domain of polynomials with integer coefficients is not a PID. Consider I=5,xII = \lang 5, x \rang_I. Assume that pZ[x]:I=pI\exists p \in \Z[x]: I =\lang p \rang_I . Then 5=p(x)f(x)    p(x)=pZ5=p(x)f(x) \implies p(x) = p \in \Z. Next, x=pg(x)    g(x)=±x,p=1    p(x)I=Z[x]x = pg(x) \implies g(x) = \pm x, p = \mp 1 \implies \lang p(x) \rang_I=\Z[x]. Thus we can write 3=5f(x)+xg(x)    g(x)=0,3=5f(x)3 = 5f(x)+xg(x) \implies g(x) = 0, 3=5f(x), but this is impossible for f(x)Z[x]f(x) \in \Z[x].

Proposition 2.4.14: Irreducible element generates maximal ideal

PRPIDpP{0}pIMI(P)    pP\begin{align*} &\sphericalangle \\ &P \in \mathcal R^{\mathcal {PID}} \\ & p \in P \setminus \{0\} \\ \hline \\ &\lang p \rang_I \in \mathfrak M_I(P) \iff p \in P^{-} \end{align*}

Proof

    \implies

We want to prove that p=uv    (uP)(vP)p = uv \implies (u \in P^*)\vee(v \in P^*).

pIMI(P),p=uv    (2.4.6)pIuI    pIMI(P){pI=uI    (2.4.6)xP:ux=p=uv    v=xPuI=P    (2.4.6)uP\lang p \rang_I \in \mathfrak M_I(P), p = uv \overset{(2.4.6)}\implies \lang p \rang_I \subseteq \lang u \rang_I \overset{\lang p \rang_I \in \mathfrak M_I(P)}{\implies} \\ \begin{cases} \lang p \rang_I = \lang u \rang_I \overset{(2.4.6)}\implies \exist x \in P^*: ux = p = uv \implies v = x \in P^*\\ \lang u \rang_I = P \overset{(2.4.6)}\implies u \in P^* \end{cases} \\

    \impliedby

We want to prove that aP:pIaIP    (aI=P)(pI=aI)\forall a \in P: \lang p \rang_I \subseteq \lang a \rang_I \subseteq P \implies (\lang a \rang_I=P)\vee(\lang p \rang_I=\lang a \rang_I)

aP:pIaIP    xP:p=ax    pP{xP    (2.4.6)pI=aIaP    (2.4.6)aI=P\forall a \in P: \lang p \rang_I \subseteq \lang a \rang_I \subseteq P \implies \exists x \in P: p = ax \overset{p \in P^-}\implies \\ \begin{cases} x \in P^* \overset{(2.4.6)}\implies \lang p \rang_I = \lang a \rang_I \\ a \in P^* \overset{(2.4.6)}\implies \lang a \rang_I = P \end{cases}

\square

Proposition 2.4.15: Irreducible = prime

PRPIDpP    pP(P)\begin{align*} &\sphericalangle \\ &P \in \mathcal R^{\mathcal{PID}} \\ \hline \\ &p \in P^{-} \iff &p \in \mathfrak P(P) \end{align*}

Proof

    \implies

(2.4.14)    pIMI(P)    (2.3.6)pIPI(P)    (2.4.1)pP(P)(2.4.14) \implies \lang p \rang_I \in\mathfrak M_I(P) \overset{(2.3.6)}{\implies} \lang p \rang_I \in\mathfrak P_I(P) \overset{(2.4.1)}\implies p \in \mathfrak P(P) \\

    \impliedby

Follows from (2.4.7)(2.4.7)

\square

note

We proved in (2.4.12)(2.4.12) that irreducible is prime for UFD. Further, we'll see that each PID is a UFD (in (2.4.17)(2.4.17)), so this proposition (2.4.15)(2.4.15) should be a simple corrolary of (2.4.12)(2.4.12) and (2.4.17)(2.4.17). Hoewever, the proof for (2.4.17)(2.4.17) uses (2.4.15)(2.4.15) that's why we need two disctinct proofs in (2.4.12)(2.4.12) and (2.4.15)(2.4.15).

Proposition 2.4.16: PID is Noetherian

PRPIDPRN\begin{align*} &\sphericalangle \\ &P \in \mathcal R^{\mathcal{PID}}\\ \hline \\ &P \in \mathcal R^{\mathcal{N}} \end{align*}

Proof

Consider chain of ideals I1I2I_1 \subseteq I_2 \subseteq \ldots, define I:=iIiI:=\bigcup_i I_i. In (2.4.9)(2.4.9) we prove that in this case IRPI \lhd_R P. So we have

PRPID    aP:I=aI    NN:aIN    I=aIaININI=iIiI    IN=I    nN:I=INInI    In=INP \in \mathcal R^{\mathcal{PID}} \implies \exists a \in P: I = \lang a \rang_I \implies \exists N \in \N: a \in I_N \implies \\ I=\lang a \rang_I \overset{a \in I_N}\subseteq I_N \overset{I=\bigcup_i I_i}\subseteq I \implies I_N = I \implies \\ \forall n \ge N: I=I_N \subseteq I_n \subseteq I \implies I_n = I_N

\square

Proposition 2.4.17: PID is UFD

PRPIDPRUFD\begin{align*} &\sphericalangle \\ &P \in \mathcal R^{\mathcal{PID}}\\ \hline \\ &P \in \mathcal R^{\mathcal{UFD}} \end{align*}

Proof

Existence of factorization

Let's prove that pP(P{0}):p1,pkP:p=p1pk\forall p \in P \setminus (P^* \cup \{0\}): \exists p_1, \ldots p_k \in P^-: p= p_1\cdot \ldots \cdot p_k.

If pPp \in P^-, then we're done. Otherwise, p1,p2P(P{0}):a=p1p2\exists p_1, p_2 \in P \setminus (P^* \cup \{0\}): a = p_1p_2. If both of these elements are irreducible, we're done. Otherwise, assime p1p_1 is reducible, that means p1=p11p12p_1=p_{11}p_{12} and we can repeat the process until we get p=p1pkp=p_1\ldots p_k, where pip_i is irreducible.

Now the only question is - why does this process ever terminate? In other words why is kk finite? Assume it's not. Then we have infinite sequence p1,p11,p112,p_1, p_{11}, p_{112}, \ldots which we simply denote as p1,p2,p3,p_1, p_{2}, p_{3}, \ldots, where pi+1pip_{i+1} \mid p_i. By (2.4.6)(2.4.6) and we know that piIpi+1I\lang p_{i} \rang_I \subseteq \lang p_{i+1} \rang_I. Further note, that not only pi+1pip_{i+1} \mid p_i but also pi=pi+1xp_i = p_{i+1}x where xP{0}x \notin P^* \cup \{0\} (by construction), so by (2.4.6)(2.4.6) we cannot have piI=pi+1I\lang p_{i} \rang_I = \lang p_{i+1} \rang_I. So piIpi+1I\lang p_{i} \rang_I \subset \lang p_{i+1} \rang_I and we have an ascending chain of ideals p1Ip2I\lang p_{1} \rang_I \subset \lang p_{2} \rang_I \subset \ldots, that contradicts to the fact that PP is Noetherian by (2.4.16)(2.4.16).

Uniqueness of factorization

Assume p1pk=q1qs,pi,qiPp_1\ldots p_k=q_1\ldots q_s, p_i, q_i \in P^{-}. Without the loss of generality ksk \le s.

p1P    (2.4.15)p1P(P)p1q1qs    qj:qj=u1p1p_1 \in P^{-} \overset{(2.4.15)}{\implies} p_1 \in \mathfrak P(P) \\ p_1 \mid q_1\ldots q_s \implies \exists q_j: q_j = u_1p_1

Since qj,p1Pq_j, p_1 \in P^{-}, we know that u1Pu_1 \in P^*. Now cancel p1p_1 from both sides, renumerate qiq_i if necessary to get:

p2pk=u1q1qs1p_2\ldots p_k=u_1q_1 \ldots q_{s-1}

Making this process kk times we get 1=vq1qsk1 = vq_1\ldots q_{s-k}. But this means that qiPq_i \in P^*, which would contradict to qiPq_i \in P^-. So the only way for this equality to hold is k=sk = s. And so pi=uiqj,uiPp_i =u_iq_j, u_i \in P^*

\square

Euclidean domains

def: Norm

BRIDN:BN0,N(0)=0Nnorm\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal{ID}} \\ &N: B \to \N \cup 0, N(0) = 0 \\ \hline \\ &N - \text{norm} \end{align*}

def: Euclidean domain

ERIDNnorm:a,bE,b0:q,rE:a=bq+r,(r=0)(N(r)<N(b))ERE\begin{align*} &\sphericalangle \\ &E \in \mathcal R^{\mathcal{ID}} \\ &\exists N - \text{norm}: \\ &\forall a, b \in E, b \ne 0: \exists q, r \in E: a = bq + r, (r=0) \vee (N(r) < N(b)) \\ \hline \\ &E \in \mathcal R^{\mathcal E} \end{align*}

Example: Euclidean domain

Z\Z is euclidean domain with N(x)=xN(x)=|x|

Proposition 2.4.18 Euclidean domain is PID

EREERPID\begin{align*} &\sphericalangle \\ &E \in \mathcal R^{\mathcal E} \\ \hline \\ &E \in \mathcal R^{\mathcal {PID}} \end{align*}

Proof

We'll prove that any ideal is principal. Consider IREI \lhd_R E. If I={0}I = \{0\} then we're done. Otherwise assume dId \in I is the elemeint with the minimum norm.

Obviously dII\lang d \rang_I \subseteq I. Let's finish the proof by proving dII\lang d \rang_I \supseteq I:

aI    q,rE:a=qd+r,(r=0)(N(r)<N(d))r=aqd    rI\forall a \in I \implies \exists q, r \in E: a = qd + r, (r = 0) \vee (N(r) < N(d)) \\ r = a - qd \implies r \in I

By definition of d:N(r)N(d)d: N(r) \ge N(d), so by definition of rr we can only have r=0r=0. So we proved aI    a=qd    adI\forall a \in I \implies a =qd \implies a \in \lang d \rang_I.

\square

Fields

def: Field

FRCF=F{0}FF\begin{align*} &\sphericalangle \\ &F \in \mathcal R^{\mathcal {C}} \\ &F^*= F \setminus \{0\} \\ \hline \\ &F \in \mathcal F \end{align*}

Proposition 2.4.19: Field is a euclidean domain

FFFRE\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ \hline \\ &F \in \mathcal R^{\mathcal {E}} \end{align*}

Proof

First, let's prove FRIDF \in \mathcal R^{\mathcal {ID}}. Consider a,bF=F0a, b \in F^* = F \setminus 0 and assume ab=0ab=0. This implies that a1ab=0    b=1b=0a^{-1}ab=0 \implies b=1\cdot b = 0, which is a contradiction to bF0b \in F \setminus 0. So ab0a \cdot b \ne 0 and we proved RRIDR \in \mathcal R^{\mathcal {ID}}.

Next, we define xF:N(x):=0\forall x \in F: N(x):=0 and a,bF{0}:a=b(b1a)+r\forall a, b \in F \setminus \{0\}: a = b\cdot (b^{-1}a)+r. In this case r=0r=0.

\square

Proposition 2.4.20: Field criterion

ARCThe following are equivalent:AFIRA    (I={0})(I=A)BRC{0},ϕ:ARB,ϕ(1)=1    kerϕ={0}\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ \hline \\ &\text{The following are equivalent:}\\ &\begin{align*} & A \in \mathcal F \tag{a}\\ & I \lhd_R A \implies (I=\{0\})\vee(I=A) \tag{b} \\ & B \in \mathcal R^{\mathcal C} \setminus \{0\}, \phi: A \rightsquigarrow_R B, \phi(1)=1 \implies \ker \phi = \{0\} \hspace{1cm} \tag{c} \end{align*} \\ \end{align*}

Proof

(a)    (b)(a) \implies (b)

Consider an ideal IRA I\lhd_R A. It's either zero or has non-zero elements. But in the latter case a non-zero element aF{0}=Fa \in F \setminus \{0\}=F^*, so by (2.4.6)(2.4.6) we have I=AI = A

(b)    (c)(b) \implies (c)

ϕ:ARB    (2.3.8)kerϕRA    (b)(kerϕ={0})(kerϕ=A)ϕ(1)=1    kerϕA    kerϕ={0}\phi: A \rightsquigarrow_R B \overset{(2.3.8)}\implies \ker \phi \lhd_RA \overset{(b)}\implies (\ker \phi = \{0\}) \vee(\ker \phi = A) \\ \phi(1)=1 \implies \ker \phi \ne A \implies \ker \phi = \{0\}

(c)    (a)(c) \implies (a)

We will prove that aAA:a=0\forall a \in A \setminus A^*: a = 0.

aAA    (2.4.6)aIA    A/aI{0+A}a \in A \setminus A^* \overset{(2.4.6)}\implies \lang a \rang_I \ne A \implies A / \lang a \rang_I \ne \{0+A\}\\

That means if we assume B:=A/aIB:=A / \lang a \rang_I and ϕ\phi to be natural homomorphism that is ϕ:ARA/aI,xx+aI,ϕ(1)=1+aI\phi: A \rightsquigarrow_R A / \lang a \rang_I, x \mapsto x+\lang a \rang_I, \phi(1) = 1 + \lang a \rang_I, then by (c)(c) kerϕ={0}\ker \phi = \{0\}. On the other hand kerψ=aI\ker\psi = \lang a \rang_I, so a=0a = 0.

\square

Proposition 2.4.21: Factor ring by maximal ideal is a field

RRCIRRIMI(R)    R/IF\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal C} \\ &I \lhd_R R \\ \hline \\ &I \in \mathfrak M_I(R) \iff R/I \in \mathcal F \end{align*}

Proof

    \implies

First, RRC    (a+I)(b+I)=ab+IR/IRCR \in \mathcal R^{\mathcal C} \overset{(a+I)(b+I)=ab+I}\implies R/I \in \mathcal R^{\mathcal C}.

Fix some a+IR/I,aIa+I \in R/I, a \notin I. We want to prove that it has an inverse.

Consider an ideal J:=aI+IJ:=\lang a \rang_I + I (it's an ideal by (2.3.4)(2.3.4)). aI    IJa \notin I \implies I \subset J. Since IMI(R)I \in \mathfrak M_I(R), this means that J=RJ=R.

J=R    1J    bR,iI:1=ba+i    1+I=ba+I=(b+I)(a+I)=(a+I)(b+I)    b+I=(a+I)1J=R \implies 1\in J \implies \exists b \in R, i \in I: 1=ba+i \implies \\ 1+I = ba+I=(b+I)(a+I) = (a+I)(b+I) \implies \\ b+I = (a+I)^{-1}

    \impliedby

R/IF    0+I,1+IR/I,0+I1+I    IRR/I \in \mathcal F \implies 0+I, 1+I \in R/I, 0+I \ne 1+I \implies I \subset R

Fix some JRR,IJJ \lhd_R R, I \subset J, we want to prove J=RJ=R. That will imply that IMI(R)I \in \mathfrak M_I(R).

Take some aJIa \in J \setminus I and take some bR:(b+I)=(a+I)1b \in R: (b+I)=(a+I)^{-1}. Then

ab+I=(a+I)(b+I)=1+I    iI:ab+i=1ab+I = (a+I)(b+I)=1+I \implies \\ \exists i \in I: ab+i = 1

Now note that aJ    abJa \in J \implies ab \in J and iI    iJi \in I \implies i \in J. That means that 1J1 \in J and consequently J=RJ = R

\square

def: Fractions equivalence relation

F:(a,b)F(c,d)    ad=bcFfractions equivalence relationabequivalence class\begin{align*} &\sphericalangle \\ &\sim_F: (a, b) \sim_F (c, d) \iff ad = bc\\ \hline \\ &\sim_F - \text{fractions equivalence relation} \\ &\frac{a}{b} - \text{equivalence class} \end{align*}

def: Field of fractions

BRIDF(B):=({ab,a,bB},+,)ab+cd:=ad+bcbdabcd:=acbdF(B) is a field of fractions over B\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ & \mathfrak F(B) := (\{\frac{a}{b}, a, b \in B\}, +, \cdot )\\ &\frac{a}{b} + \frac{c}{d}:= \frac{ad + bc}{bd} \\ &\frac{a}{b} \cdot \frac{c}{d}:=\frac{ac}{bd} \\ \hline \\ &\mathfrak F(B) \text{ is a field of fractions over } B\\ \end{align*}

In other words, F(B)\mathfrak F(B) is a collection of equivalence classes, as defined by the equivalence relation above. Conceptually, it can be seen as fractions represented by a/ba/b, similar to the structure observed in rational numbers. Indeed, the field of rational numbers Q\mathbb Q, is an example of a field of fractions over the integers Z\Z.

Proposition 2.4.22: Field of fractions is a field

BRIDF(B)F\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &\mathfrak F(B) \in \mathcal F \end{align*}

Proof

First, let's prove that operations on F(B)\mathfrak F(B) are well-defined. Assume (a1,b1)F(a2,b2),(c1,d1)F(c2,d2)(a_1, b_1) \sim_F (a_2, b_2), (c_1, d_1) \sim_F (c_2, d_2), that is a1b2=a2b1,c1d2=c2d1a_1b_2 = a_2b_1, c_1d_2 = c_2d_1

(a1d1+b1c1)(b2d2)=a1d1b2d2+b1c1b2d2=a2d1b1d2+b1c2b2d1==(a2d2+c2b2)b1d1    (a1d1+b1c1,b1d1)F(a2d2+b2c2,b2d2)(a_1d_1+b_1c_1)(b_2d_2)=a_1d_1b_2d_2+b_1c_1b_2d_2=a_2d_1b_1d_2+b_1c_2b_2d_1= \\ =(a_2d_2+c_2b_2)b_1d_1 \implies (a_1d_1+b_1c_1, b_1d_1) \sim_F (a_2d_2+b_2c_2, b_2d_2) a1c1b2d2=a2c2b1d1    (a1c1,b1d1)F(a2c2,b2d2)a_1c_1b_2d_2=a_2 c_2b_1d_1 \implies (a_1c_1, b_1d_1) \sim_F (a_2c_2, b_2d_2)

It's easy to prove that operations ++ and \cdot are associative, commutative and distributive (this is essentially the same as proving it for Q\mathbb Q).

Let's check zero, identity and inverses. 0:=01,1:=11,(ab)1=ba0: = \frac{0}{1}, 1:=\frac{1}{1}, (\frac{a}{b})^{-1} = \frac{b}{a}:

0+ab=01+ab=a1+0bb1=ab1ab=1a1b=ababba=abab=11=10+\frac{a}{b} = \frac{0}{1}+\frac{a}{b} = \frac{a\cdot 1 + 0 \cdot b}{ b \cdot 1}= \frac{a}{b} \\ \, \\ 1 \cdot \frac{a}{b} = \frac{1\cdot a}{ 1 \cdot b} = \frac{a}{b} \\ \, \\ \frac{a}{b}\cdot \frac{b}{a} = \frac{ab}{ab}=\frac{1}{1} =1

\square

Proposition 2.4.23: Field of fractions is a minimal field

BRIDEF:BREϕ:F(B)11RE:aB:ϕ(a1)=a\begin{align*} &\sphericalangle \\ &B \in \mathcal R^{\mathcal {ID}} \\ &E \in \mathcal F: B \subseteq_R E \\ \hline \\ &\exists\phi:\mathfrak F(B) \overset{1-1}{\rightsquigarrow}_R E: \forall a \in B: \phi(\frac{a}{1})=a \end{align*}

Proof

Define ϕ:abab1\phi: \frac{a}{b} \mapsto ab^{-1}. Let's prove, that the mapping is well-defined:

(a,b)F(c,d)    ad=bc    ab1=cd1(a, b) \sim_F (c, d) \implies ad = bc \implies ab^{-1}=cd^{-1}

Next, let's prove that ϕ\phi is a homomorphism:

ϕ(ab+cd)=ϕ(ad+bcbd)=(ad+bc)(bd)1=ab1+cd1=ϕ(ab)+ϕ(cd)ϕ(abcd)=ϕ(acbd)=ac(bd)1=ab1cd1=ϕ(ab)ϕ(cd)\phi(\frac{a}{b} + \frac{c}{d})=\phi(\frac{ad+bc}{bd})=(ad+bc) \cdot (bd)^{-1}=\\ ab^{-1}+cd^{-1}=\phi(\frac{a}{b}) + \phi(\frac{c}{d}) \\ \phi(\frac{a}{b} \cdot \frac{c}{d}) = \phi(\frac{ac}{bd}) = ac(bd)^{-1} = ab^{-1}cd^{-1}=\phi(\frac{a}{b})\cdot\phi(\frac{c}{d})

Obviously ϕ(11)=1\phi(\frac{1}{1})=1 so by (2.4.20):kerϕ={0}    ϕ:F(B)11RE(2.4.20): \ker \phi = \{0\} \implies \phi:\mathfrak F(B) \overset{1-1}{\rightsquigarrow}_R E

\square