2.5 Ring of polynomials
def: Polynomial
∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n ≠ 0 p : x ↦ a 0 + a 1 x + … + a n x n p ∈ R [ x ] ( p − polynomial ) \begin{align*}
&\sphericalangle \\
&R \in \mathcal R \\
&a_0, a_1, \ldots, a_n \in R \\
&a_n \ne 0 \\
&p: x \mapsto a_0+a_1x + \ldots + a_nx^n
\\
\hline
\\
& p \in R[x] \,\,\, (p- \text{polynomial}) \\
\end{align*} ∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n = 0 p : x ↦ a 0 + a 1 x + … + a n x n p ∈ R [ x ] ( p − polynomial )
In gerenal the notation R [ α ] R[\alpha] R [ α ] means a minimal ring containing both R R R and α \alpha α . For instance Z [ 2 ] = { a + b 2 , a , b ∈ Z } \Z[\sqrt 2] = \{a + b \sqrt 2, a, b \in \Z\} Z [ 2 ] = { a + b 2 , a , b ∈ Z } . Thus R [ x ] R[x] R [ x ] is a minimal ring that contains both R R R and indeterminate x x x . It can be easily seen that it's exactly the set of polynomials in one variable.
In particular, the set of all polynomial form a ring. We define the operations in the following manner. First, we need to make a convention that we pad polynomials of different degree with zeros, so they have the same number of coefficients. For example f : x ↦ 3 x 2 + 2 x + 1 f: x \mapsto 3x^2+2x+1 f : x ↦ 3 x 2 + 2 x + 1 and g : x ↦ x + 2 g: x \mapsto x+2 g : x ↦ x + 2 , then we say that g : x ↦ 0 x 2 + x + 2 g: x \mapsto 0x^2+x+2 g : x ↦ 0 x 2 + x + 2 . Then the operations are defined by:
f + g = ( a 0 + b 0 ) + ( a 1 + b 1 ) x + … + ( a n + b n ) x n f ⋅ g : x ↦ c 0 + c 1 x + … + c m + n x m + n c i = ∑ j = 0 i a j b i − j f+g = (a_0+b_0)+(a_1+b_1)x + \ldots + (a_n+b_n)x^n \\
f\cdot g: x \mapsto c_0+c_1x+\ldots + c_{m+n}x^{m+n} \\
c_i=\sum_{j=0}^{i}a_jb_{i-j} f + g = ( a 0 + b 0 ) + ( a 1 + b 1 ) x + … + ( a n + b n ) x n f ⋅ g : x ↦ c 0 + c 1 x + … + c m + n x m + n c i = j = 0 ∑ i a j b i − j
def: Polynomial degree
∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n ≠ 0 p : x ↦ a 0 + a 1 x + … + a n x n deg p : = n ( p − polynomial of degree n ) deg ( x ↦ 0 ) : = − ∞ \begin{align*}
&\sphericalangle \\
&R \in \mathcal R \\
&a_0, a_1, \ldots, a_n \in R \\
&a_n \ne 0 \\
&p: x \mapsto a_0+a_1x + \ldots + a_nx^n
\\
\hline
\\
& \deg p := n \,\,\,(p - \text{polynomial of degree } n) \\
& \deg (x \mapsto 0) := -\infty \\
\end{align*} ∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n = 0 p : x ↦ a 0 + a 1 x + … + a n x n deg p := n ( p − polynomial of degree n ) deg ( x ↦ 0 ) := − ∞
def: Leading term
∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n ≠ 0 p : x ↦ a 0 + a 1 x + … + a n x n L T ( p ) : = a n x n − leading term L C ( p ) : = a n − leading coefficient \begin{align*}
&\sphericalangle \\
&R \in \mathcal R \\
&a_0, a_1, \ldots, a_n \in R \\
&a_n \ne 0 \\
&p: x \mapsto a_0+a_1x + \ldots + a_nx^n
\\
\hline
\\
& LT(p):=a_nx^n - \text{leading term} \\
& LC(p):=a_n - \text{leading coefficient} \\
\end{align*} ∢ R ∈ R a 0 , a 1 , … , a n ∈ R a n = 0 p : x ↦ a 0 + a 1 x + … + a n x n L T ( p ) := a n x n − leading term L C ( p ) := a n − leading coefficient
def: Monic polynomial
∢ R ∈ R p ∈ R [ x ] L C ( p ) = 1 p − monic polynomial \begin{align*}
&\sphericalangle \\
&R \in \mathcal R \\
&p \in R[x] \\
&LC(p)=1
\\
\hline
\\
&p- \text{monic polynomial}
\end{align*} ∢ R ∈ R p ∈ R [ x ] L C ( p ) = 1 p − monic polynomial
def: Action on coefficents
∢ R ∈ R p ∈ R [ x ] p ( x ) = a 0 + a 1 x + … + a n x n p ϕ ( x ) : = ϕ ( a 0 ) + … + ϕ ( a n ) x n \begin{align*}
&\sphericalangle \\
&R \in \mathcal R \\
&p \in R[x] \\
&p(x)= a_0+a_1x + \ldots + a_nx^n
\\
\hline
\\
&p^{\phi}(x):= \phi(a_0)+\ldots + \phi(a_n)x^n
\end{align*} ∢ R ∈ R p ∈ R [ x ] p ( x ) = a 0 + a 1 x + … + a n x n p ϕ ( x ) := ϕ ( a 0 ) + … + ϕ ( a n ) x n
Polynomials over commutative rings
Proposition 2.5.1: Polynomial rings with isomorphic base rings are isomorphic
∢ R 1 , R 2 ∈ R C ϕ : R 1 ⇝ R R 2 ϕ x : R 1 [ x ] → R 2 [ x ] , p ( x ) ↦ p ϕ ( x ) ϕ x : R 1 [ x ] ⇝ R R 2 [ x ] ϕ : R 1 ≅ R R 2 ⟹ R 1 [ x ] ≅ ϕ x R 2 [ x ] \begin{align*}
&\sphericalangle \\
&R_1, R_2 \in \mathcal R^{\mathcal C} \\
&\phi: R_1 \rightsquigarrow_R R_2 \\
&\phi_x: R_1[x] \to R_2[x], p(x) \mapsto p^{\phi}(x) \\
\hline
\\
&\begin{align*}
& \phi_x: R_1[x] \rightsquigarrow_R R_2[x] \hspace{0.5cm} \tag{a}\\
&\phi: R_1 \cong_R R_2 \implies R_1[x] \overset{\phi_x}\cong R_2[x] \hspace{0.5cm} \tag{b}\\
\end{align*}
\end{align*} ∢ R 1 , R 2 ∈ R C ϕ : R 1 ⇝ R R 2 ϕ x : R 1 [ x ] → R 2 [ x ] , p ( x ) ↦ p ϕ ( x ) ϕ x : R 1 [ x ] ⇝ R R 2 [ x ] ϕ : R 1 ≅ R R 2 ⟹ R 1 [ x ] ≅ ϕ x R 2 [ x ] ( a ) ( b )
Proof
a.
Further we'll assume that the two polynomials are of the same degree. If not, we just pad one of them with zeros.
Let's prove R 1 [ x ] ⇝ ϕ x R 2 [ x ] R_1[x] \overset{\phi_x}\rightsquigarrow R_2[x] R 1 [ x ] ⇝ ϕ x R 2 [ x ] :
ϕ x ( a 0 + … + a n x n + b 0 + … + b n x n ) = ϕ ( a 0 + b 0 ) + … + ϕ ( a n + b n ) x n = ϕ ( a 0 ) + … + ϕ ( a n ) x n + ϕ ( b 0 ) + … + ϕ ( b n ) x n = ϕ x ( a 0 + … + a n x n ) + ϕ x ( b 0 + … + b n x n ) \phi_x(a_0+\ldots +a_nx^n + b_0+\ldots +b_nx^n)= \\
\phi(a_0+b_0)+\ldots+\phi(a_n+b_n)x^n=\\
\phi(a_0)+\ldots + \phi(a_n)x^n+\phi(b_0)+\ldots + \phi(b_n)x^n=\\
\phi_x(a_0+\ldots +a_nx^n)+\phi_x(b_0+\ldots +b_nx^n) ϕ x ( a 0 + … + a n x n + b 0 + … + b n x n ) = ϕ ( a 0 + b 0 ) + … + ϕ ( a n + b n ) x n = ϕ ( a 0 ) + … + ϕ ( a n ) x n + ϕ ( b 0 ) + … + ϕ ( b n ) x n = ϕ x ( a 0 + … + a n x n ) + ϕ x ( b 0 + … + b n x n )
ϕ x ( ( a 0 + … + a n x n ) ⋅ ( b 0 + … + b n x n ) ) = ϕ ( a 0 b 0 ) + … + ϕ ( ∑ i = 0 k a i b k − i ) x k + … + ϕ ( a n b n ) x 2 n = ϕ ( a 0 ) ϕ ( b 0 ) + … + ∑ i = 0 k ϕ ( a i ) ϕ ( b k − i ) x k + … + ϕ ( a n ) ϕ ( b n ) x 2 n = ( ϕ ( a 0 ) + … + ϕ ( a n ) x n ) ⋅ ( ϕ ( b 0 ) + … + ϕ ( b n ) x n ) = ϕ x ( a 0 + … + a n x n ) ⋅ ϕ x ( b 0 + … + b n x n ) \phi_x((a_0+\ldots +a_nx^n) \cdot (b_0+\ldots +b_nx^n))=\\
\phi(a_0b_0)+\ldots+\phi(\sum_{i=0}^ka_ib_{k-i})x^k + \ldots + \phi(a_nb_n)x^{2n}=\\
\phi(a_0)\phi(b_0)+\ldots+\sum_{i=0}^k\phi(a_i)\phi(b_{k-i})x^k + \ldots + \phi(a_n)\phi(b_n)x^{2n}= \\
(\phi(a_0)+\ldots +\phi(a_n)x^n)\cdot (\phi(b_0)+\ldots +\phi(b_n)x^n) = \\
\phi_x(a_0+\ldots +a_nx^n) \cdot \phi_x(b_0+\ldots +b_nx^n) ϕ x (( a 0 + … + a n x n ) ⋅ ( b 0 + … + b n x n )) = ϕ ( a 0 b 0 ) + … + ϕ ( i = 0 ∑ k a i b k − i ) x k + … + ϕ ( a n b n ) x 2 n = ϕ ( a 0 ) ϕ ( b 0 ) + … + i = 0 ∑ k ϕ ( a i ) ϕ ( b k − i ) x k + … + ϕ ( a n ) ϕ ( b n ) x 2 n = ( ϕ ( a 0 ) + … + ϕ ( a n ) x n ) ⋅ ( ϕ ( b 0 ) + … + ϕ ( b n ) x n ) = ϕ x ( a 0 + … + a n x n ) ⋅ ϕ x ( b 0 + … + b n x n )
b.
Obviously ϕ x : R 1 [ x ] ↔ R 2 [ x ] \phi_x: R_1[x] \leftrightarrow R_2[x] ϕ x : R 1 [ x ] ↔ R 2 [ x ]
□ \square □
We'll use the notation ϕ x \phi_x ϕ x to denote the homomorphism that maps coefficents of polynomials using ϕ \phi ϕ
Polynomials over integral domains
Proposition 2.5.2 Degree of a polynomials product
∢ R ∈ R I D ∀ f , g ∈ R [ x ] ∖ { 0 } : deg f g = deg f + deg g \begin{align*}
&\sphericalangle \\
&R \in \mathcal R^{\mathcal {ID}} \\
\hline
\\
&\forall f, g \in R[x] \setminus \{0\}: \deg fg=\deg f+\deg g
\end{align*} ∢ R ∈ R I D ∀ f , g ∈ R [ x ] ∖ { 0 } : deg f g = deg f + deg g
Proof
∀ f , g ∈ R [ x ] ∖ { 0 } : L T ( f ) = a n x n , L T ( g ) = b m x m : L T ( f g ) = L T ( f ) ⋅ L T ( g ) = a n b m x n + m ⟹ R ∈ R I D L T ( f g ) ≠ 0 ⟹ deg f g = deg f + deg g \forall f, g \in R[x] \ \setminus \{0\}: LT(f)=a_nx^n, LT(g)=b_mx^m: \\
LT(fg)=LT(f)\cdot LT(g) = a_nb_mx^{n+m} \overset{R \in R^{\mathcal {ID}}}{\implies} LT(fg) \ne 0 \implies \\
\deg fg=\deg f+\deg g \\ ∀ f , g ∈ R [ x ] ∖ { 0 } : L T ( f ) = a n x n , L T ( g ) = b m x m : L T ( f g ) = L T ( f ) ⋅ L T ( g ) = a n b m x n + m ⟹ R ∈ R I D L T ( f g ) = 0 ⟹ deg f g = deg f + deg g
□ \square □
Example: Degree of a product over non-integral domain
In Z 6 \Z_6 Z 6 we have 2 x ⋅ 3 x = 0 2x \cdot 3x = 0 2 x ⋅ 3 x = 0 , so obviously deg 2 x + deg 3 x ≠ deg 2 x ⋅ 3 x \deg 2x + \deg 3x \ne \deg 2x \cdot 3x deg 2 x + deg 3 x = deg 2 x ⋅ 3 x .
Proposition 2.5.3 Units for polynomials
∢ R ∈ R I D R [ x ] ∗ = R ∗ \begin{align*}
&\sphericalangle \\
&R \in \mathcal R^{\mathcal {ID}} \\
\hline
\\
&R[x]^* = R^*
\end{align*} ∢ R ∈ R I D R [ x ] ∗ = R ∗
Proof
R ∗ ⊆ R [ x ] ∗ R^* \subseteq R[x]^* R ∗ ⊆ R [ x ] ∗ is obvious. Let's prove R ∗ ⊇ R [ x ] ∗ R^* \supseteq R[x]^* R ∗ ⊇ R [ x ] ∗ :
f ∈ R [ x ] ∗ ⟹ ∃ g ∈ R [ x ] : f g = 1 ⟹ deg f + deg g = deg 1 = 0 ⟹ ∀ h ≠ 0 : deg h ≥ 0 deg f = 0 , deg g = 0 ⟹ f ∈ R , g ∈ R , f g = 1 ⟹ f ∈ R ∗ f \in R[x]^* \implies \exists g \in R[x]: fg = 1 \implies \\\deg f + \deg g = \deg 1 = 0 \overset{\forall h \ne 0: \deg h \ge 0}{\implies} \deg f=0, \deg g =0 \implies \\
f \in R, g \in R, fg = 1 \implies f \in R^* f ∈ R [ x ] ∗ ⟹ ∃ g ∈ R [ x ] : f g = 1 ⟹ deg f + deg g = deg 1 = 0 ⟹ ∀ h = 0 : d e g h ≥ 0 deg f = 0 , deg g = 0 ⟹ f ∈ R , g ∈ R , f g = 1 ⟹ f ∈ R ∗
□ \square □
Proposition 2.5.4 Polynomials over integral domain is an integral domain
∢ R ∈ R I D R [ x ] ∈ R I D \begin{align*}
&\sphericalangle \\
&R \in \mathcal R^{\mathcal {ID}} \\
\hline
\\
&R[x] \in \mathcal R^{\mathcal {ID}} \\
\end{align*} ∢ R ∈ R I D R [ x ] ∈ R I D
Proof
∀ f , g ∈ R [ x ] ∖ { 0 } : deg f g = ( 2.5.2 ) deg f + deg g ≥ 0 ⟹ f g ≠ 0 \forall f,g \in R[x] \setminus \{0\}: \deg fg \overset{(2.5.2)}{=} \deg f +\deg g \ge 0 \implies fg \ne 0 ∀ f , g ∈ R [ x ] ∖ { 0 } : deg f g = ( 2.5.2 ) deg f + deg g ≥ 0 ⟹ f g = 0
It's easy to see that R [ x ] ∈ G + A R[x] \in \mathcal G^{\mathcal A}_+ R [ x ] ∈ G + A . The identity in this case is 0, the inverse for ∑ i a i x i \sum_ia_ix^i ∑ i a i x i is ∑ i ( − a i ) x i \sum_i(-a_i)x^i ∑ i ( − a i ) x i . The abelian group properties follows from the abelian group properties of R R R .
Let's prove multiplicative associativity:
p : = ∑ i m a i x i , q : = ∑ i n b i x i , r : = ∑ i p c i x i : ( p q ) r = ( ∑ i n a i x i ∑ i m b i x i ) ∑ i p c i x i = = ∑ i n + m ( ∑ j i a i b i − j ) x i ∑ i p c i x i = ∑ i n + m + p [ ∑ j i ( ∑ k j a k b j − k ) c i − j ] x i = ∑ i n + m + p [ ∑ j + k + l = i a k b j c l ] x i p := \sum_i^ma_ix^i, q := \sum_i^nb_ix^i, r:=\sum_i^pc_ix^i: \\
(pq)r = (\sum_i^na_ix^i\sum_i^mb_ix^i)\sum_i^pc_ix^i = \\
= \sum_i^{n+m}(\sum_j^{i}a_ib_{i-j})x^i\sum_i^pc_ix^i = \\
\sum_i^{n+m+p}[\sum_j^i(\sum_k^ja_kb_{j-k})c_{i-j}]x^i = \\
\sum_i^{n+m+p}[\sum_{j+k+l=i}a_kb_{j}c_{l}]x^i p := i ∑ m a i x i , q := i ∑ n b i x i , r := i ∑ p c i x i : ( pq ) r = ( i ∑ n a i x i i ∑ m b i x i ) i ∑ p c i x i = = i ∑ n + m ( j ∑ i a i b i − j ) x i i ∑ p c i x i = i ∑ n + m + p [ j ∑ i ( k ∑ j a k b j − k ) c i − j ] x i = i ∑ n + m + p [ j + k + l = i ∑ a k b j c l ] x i
By the symmetry of this expression, we can see that p ( q r ) = ∑ i n + m + p [ ∑ j + k + l = i a k b j c l ] x i p(qr)=\sum_i^{n+m+p}[\sum_{j+k+l=i}a_kb_{j}c_{l}]x^i p ( q r ) = ∑ i n + m + p [ ∑ j + k + l = i a k b j c l ] x i as well. Thus, ( p q ) r = p ( q r ) (pq)r=p(qr) ( pq ) r = p ( q r ) .
Distributivity and commutativity are derived similarly.
□ \square □
Polynomials over UFDs
Proposition 2.5.5 Factor ring for polynomials
∢ R ∈ R C I ⊲ R R R [ x ] / I [ x ] ≅ ( R / I ) [ x ] I ∈ P I ( R ) ⟹ I [ x ] ∈ P I ( R [ x ] ) \begin{align*}
&\sphericalangle \\
&R \in \mathcal R^{\mathcal C} \\
&I \lhd_R R
\\
\hline
\\
&\begin{align*}
&R[x] / I[x] \cong (R/I)[x] \tag{a}\\
&I \in \mathfrak P_I(R) \implies I[x] \in \mathfrak P_I(R[x]) \hspace{1cm} \tag{b}\\
\end{align*}
\end{align*} ∢ R ∈ R C I ⊲ R R R [ x ] / I [ x ] ≅ ( R / I ) [ x ] I ∈ P I ( R ) ⟹ I [ x ] ∈ P I ( R [ x ]) ( a ) ( b )
Proof
a .
Consider a map ϕ : R [ x ] ↦ ( R / I ) [ x ] \phi: R[x] \mapsto (R/I)[x] ϕ : R [ x ] ↦ ( R / I ) [ x ] that maps coefficents to a factor ring. It's easy to show that it's a homomorphism. ker ϕ = I [ x ] \ker \phi = I[x] ker ϕ = I [ x ] , thus by ( 2.3.9 ) (2.3.9) ( 2.3.9 ) R [ x ] / I [ x ] ≅ ( R / I ) [ x ] R[x] / I[x] \cong (R/I)[x] R [ x ] / I [ x ] ≅ ( R / I ) [ x ] .
b .
I ∈ P I ( R ) ⟹ ( 2.4.8 ) R / I ∈ R I D ⟹ ( 2.5.4 ) ( R / I ) [ x ] ∈ R I D ⟹ ( a ) R [ x ] / I [ x ] ∈ R I D ⟹ ( 2.4.8 ) I [ x ] ∈ P I ( R [ x ] ) I \in \mathfrak P_I(R) \overset{(2.4.8)}{\implies} R/I \in \mathcal R^{\mathcal ID} \overset{(2.5.4)}{\implies} (R/I)[x] \in \mathcal R^{\mathcal ID} \overset{(a)}{\implies} \\
R[x]/I[x] \in \mathcal R^{\mathcal ID} \overset{(2.4.8)}{\implies} I[x] \in \mathfrak P_I(R[x]) I ∈ P I ( R ) ⟹ ( 2.4.8 ) R / I ∈ R I D ⟹ ( 2.5.4 ) ( R / I ) [ x ] ∈ R I D ⟹ ( a ) R [ x ] / I [ x ] ∈ R I D ⟹ ( 2.4.8 ) I [ x ] ∈ P I ( R [ x ])
□ \square □
Proposition 2.5.6: Gauss' lemma
∢ R ∈ R U F D F : = F ( R ) p ∈ R [ x ] a ( x ) , b ( x ) ∈ F [ x ] ∖ F , p ( x ) = a ( x ) b ( x ) ⟹ ∃ r , s ∈ F , a ′ ( x ) , b ′ ( x ) ∈ R [ x ] ∖ R : a ( x ) = r a ′ ( x ) , b ( x ) = s b ′ ( x ) , p ( x ) = a ′ ( x ) b ′ ( x ) p ( x ) ∈ F [ x ] + ⟹ p ( x ) ∈ R [ x ] + \begin{align*}
&\sphericalangle \\
&R \in \mathcal R ^{\mathcal {UFD}} \\
&F:=\mathfrak F(R) \\
&p \in R[x] \\
\hline
\\
&\begin{align*}
& a(x), b(x) \in F[x] \setminus F, p(x) = a(x)b(x) \implies \\
&\exists r, s \in F, a'(x), b'(x) \in R[x] \setminus R: \\
& a(x)=ra'(x), b(x) = sb'(x), p(x)=a'(x)b'(x) \hspace{0.5cm} \tag{a}\\
& p(x) \in F[x]^+ \implies p(x) \in R[x]^+ \tag{b}\\
\end{align*}
\end{align*} ∢ R ∈ R U F D F := F ( R ) p ∈ R [ x ] a ( x ) , b ( x ) ∈ F [ x ] ∖ F , p ( x ) = a ( x ) b ( x ) ⟹ ∃ r , s ∈ F , a ′ ( x ) , b ′ ( x ) ∈ R [ x ] ∖ R : a ( x ) = r a ′ ( x ) , b ( x ) = s b ′ ( x ) , p ( x ) = a ′ ( x ) b ′ ( x ) p ( x ) ∈ F [ x ] + ⟹ p ( x ) ∈ R [ x ] + ( a ) ( b )
Proof
a.
a ( x ) , b ( x ) ∈ F [ x ] ∖ F : p ( x ) = a ( x ) b ( x ) ⟹ ∃ d ∈ R ∖ { 0 } : d p ( x ) = a ′ ( x ) b ′ ( x ) , a ′ ( x ) , b ′ ( x ) ∈ R [ x ] ∖ R a(x), b(x) \in {F[x] \setminus F}: p(x)=a(x)b(x) \implies \\ \exists d \in R \setminus \{0\}: dp(x)=a'(x)b'(x), a'(x), b'(x) \in R[x] \setminus R a ( x ) , b ( x ) ∈ F [ x ] ∖ F : p ( x ) = a ( x ) b ( x ) ⟹ ∃ d ∈ R ∖ { 0 } : d p ( x ) = a ′ ( x ) b ′ ( x ) , a ′ ( x ) , b ′ ( x ) ∈ R [ x ] ∖ R
If d ∈ R ∗ d \in R^* d ∈ R ∗ , then p ( x ) = d − 1 a ′ ( x ) b ′ ( x ) p(x)=d^{-1}a'(x)b'(x) p ( x ) = d − 1 a ′ ( x ) b ′ ( x ) and we're done. Otherwise using the fact that R ∈ R U F D R \in \mathcal R ^{\mathcal {UFD}} R ∈ R U F D we can write d = p 1 ⋅ … ⋅ p n , p i ∈ R − d = p_1\cdot \ldots \cdot p_n, p_i \in R^- d = p 1 ⋅ … ⋅ p n , p i ∈ R − :
p 1 ∈ R − ⟹ ( 2.4.12 ) p 1 ∈ P ( R ) ⟹ ( 2.4.1 ) ⟨ p ⟩ I = p 1 R ∈ P I ( R ) ⟹ ( 2.5.5. b ) ( p 1 R ) [ x ] ∈ P I ( R [ x ] ) ⟹ ( 2.4.8 ) R [ x ] / ( p 1 R ) [ x ] ∈ R I D ⟹ ( 2.5.5. a ) ( R / p 1 R ) [ x ] ∈ R I D p_1 \in R^- \overset{(2.4.12)}{\implies} p_1 \in \mathfrak P(R) \overset{(2.4.1)}\implies \lang p \rang_I = p_1R \in \mathfrak P_I(R) \overset{(2.5.5.b)}\implies \\
(p_1R)[x] \in \mathfrak P_I(R[x]) \overset{(2.4.8)}{\implies} R[x]/(p_1R)[x] \in \mathcal R^{\mathcal {ID}} \overset{(2.5.5.a)}\implies \\
(R/p_1R)[x] \in \mathcal R^{\mathcal {ID}} \\ p 1 ∈ R − ⟹ ( 2.4.12 ) p 1 ∈ P ( R ) ⟹ ( 2.4.1 ) ⟨ p ⟩ I = p 1 R ∈ P I ( R ) ⟹ ( 2.5.5. b ) ( p 1 R ) [ x ] ∈ P I ( R [ x ]) ⟹ ( 2.4.8 ) R [ x ] / ( p 1 R ) [ x ] ∈ R I D ⟹ ( 2.5.5. a ) ( R / p 1 R ) [ x ] ∈ R I D
Below we'll use the notation (mod p 1 p_1 p 1 ) to denote that only its coefficients being taken modulo p 1 p_1 p 1 . It's important to note that this doesn't change the polynomial's function in terms of x x x ; it remains a part of R [ x ] R[x] R [ x ] , the ring of polynomials over R R R .
d ≡ 0 ( m o d p 1 ) ⟹ a ′ ( x ) b ′ ( x ) = d p ( x ) ≡ 0 ( m o d p 1 ) ⟹ ( R / p 1 R ) [ x ] ∈ R I D ( a ′ ( x ) ≡ 0 ) ∨ ( b ′ ( x ) ≡ 0 ) ( m o d p 1 ) d \equiv 0 \pmod{p_1} \implies a'(x)b'(x)=dp(x) \equiv 0 \pmod {p_1} \overset{(R/p_1R)[x] \in \mathcal R^{\mathcal {ID}}}{\implies} \\
(a'(x) \equiv 0) \vee(b'(x) \equiv 0) \pmod {p_1} d ≡ 0 ( mod p 1 ) ⟹ a ′ ( x ) b ′ ( x ) = d p ( x ) ≡ 0 ( mod p 1 ) ⟹ ( R / p 1 R ) [ x ] ∈ R I D ( a ′ ( x ) ≡ 0 ) ∨ ( b ′ ( x ) ≡ 0 ) ( mod p 1 )
Without loss of generality, assume a ′ ( x ) ≡ 0 ( m o d p 1 ) a'(x) \equiv 0 \pmod {p_1} a ′ ( x ) ≡ 0 ( mod p 1 ) . Then it means that if a ′ ( x ) = a 0 + … + a n x n a'(x)=a_0 + \ldots + a_n x^n a ′ ( x ) = a 0 + … + a n x n , then ∀ i : p 1 ∣ a i \forall i: p_1 \mid a_i ∀ i : p 1 ∣ a i , and we can write d 2 p ( x ) = a 2 ( x ) b ( x ) , d 2 = p 2 ⋅ … ⋅ p n d_2p(x)=a_2(x)b(x), d_2 = p_2\cdot \ldots \cdot p_n d 2 p ( x ) = a 2 ( x ) b ( x ) , d 2 = p 2 ⋅ … ⋅ p n . Continuing this process for other p n p_n p n , we finish the proof.
b.
Follows from ( a ) (a) ( a )
□ \square □
Corrolary 2.5.7: Gauss' lemma for n factors
∢ R ∈ R U F D F : = F ( R ) p ∈ R [ x ] p ( x ) = p 1 ( x ) … p k ( x ) , p i ( x ) ∈ F [ x ] ∖ F ∃ q 1 ( x ) , … , q k ( x ) ∈ R [ x ] , r 1 , … r k ∈ F : p ( x ) = q 1 ( x ) … q k ( x ) , q i ( x ) = r i p i ( x ) p i ( x ) ∈ F [ x ] − ⟹ q i ( x ) ∈ F [ x ] − p i ( x ) ∈ F [ x ] + ⟹ q i ( x ) ∈ F [ x ] + \begin{align*}
&\sphericalangle \\
&R \in \mathcal R ^{\mathcal {UFD}} \\
&F:=\mathfrak F(R) \\
&p \in R[x] \\
&p(x) = p_1(x)\ldots p_k(x), p_i(x) \in F[x]\setminus F\\
\hline
\\
&\exists q_1(x), \ldots, q_k(x) \in R[x], r_1, \ldots r_k \in F: \\
&\begin{align*}
& p(x)=q_1(x)\ldots q_k(x), q_i(x)=r_ip_i(x) \hspace{1cm} \tag{a}\\
& p_i(x) \in F[x]^- \implies q_i(x) \in F[x]^- \tag{b}\\
& p_i(x) \in F[x]^+ \implies q_i(x) \in F[x]^+ \tag{c}\\
\end{align*}
\end{align*} ∢ R ∈ R U F D F := F ( R ) p ∈ R [ x ] p ( x ) = p 1 ( x ) … p k ( x ) , p i ( x ) ∈ F [ x ] ∖ F ∃ q 1 ( x ) , … , q k ( x ) ∈ R [ x ] , r 1 , … r k ∈ F : p ( x ) = q 1 ( x ) … q k ( x ) , q i ( x ) = r i p i ( x ) p i ( x ) ∈ F [ x ] − ⟹ q i ( x ) ∈ F [ x ] − p i ( x ) ∈ F [ x ] + ⟹ q i ( x ) ∈ F [ x ] + ( a ) ( b ) ( c )
Proof
a.
If k = 1 k=1 k = 1 , then obviously q 1 ( x ) = r 1 p 1 ( x ) q_1(x)=r_1p_1(x) q 1 ( x ) = r 1 p 1 ( x ) and we're done.
If k = n k=n k = n , consider p 12 ( x ) : = p 1 ( x ) p 2 ( x ) p_{12}(x):=p_1(x)p_2(x) p 12 ( x ) := p 1 ( x ) p 2 ( x ) . By ( 2.5.6 ) (2.5.6) ( 2.5.6 ) ∃ q 1 ( x ) q 2 ( x ) ∈ R [ x ] : p 12 ( x ) = q 1 ( x ) q 2 ( x ) \exists q_1(x)q_2(x) \in R[x]: p_{12}(x)=q_1(x)q_2(x) ∃ q 1 ( x ) q 2 ( x ) ∈ R [ x ] : p 12 ( x ) = q 1 ( x ) q 2 ( x ) . Thus we can write p ( x ) = q 1 ( x ) q 2 ( x ) p 3 ( x ) … p k ( x ) p(x)=q_1(x)q_2(x)p_3(x)\ldots p_k(x) p ( x ) = q 1 ( x ) q 2 ( x ) p 3 ( x ) … p k ( x ) . Now note that by ( 2.5.6 ) (2.5.6) ( 2.5.6 ) : q 2 ( x ) = r p 2 ( x ) , r ∈ F , p 2 ( x ) ∈ F [ x ] ∖ F ⟹ q 2 ( x ) ∈ F [ x ] ∖ F q_2(x) = rp_2(x), r \in F, p_2(x) \in F[x] \setminus F \implies q_2(x) \in F[x] \setminus F q 2 ( x ) = r p 2 ( x ) , r ∈ F , p 2 ( x ) ∈ F [ x ] ∖ F ⟹ q 2 ( x ) ∈ F [ x ] ∖ F . So we can continue with p 23 ( x ) = q 2 ( x ) p 3 ( x ) p_{23}(x)=q_2(x)p_3(x) p 23 ( x ) = q 2 ( x ) p 3 ( x ) .
Continuing this process, we finish the proof
b, c.
Follows trivially from ( a ) (a) ( a ) because q i ( x ) = c i p i ( x ) , c i ∈ F q_i(x)=c_ip_i(x), c_i \in F q i ( x ) = c i p i ( x ) , c i ∈ F .
□ \square □
Corrolary 2.5.8: Irreducibility for primary polynomials
∢ R ∈ R U F D F : = F ( R ) a ( x ) ∈ R [ x ] ∖ R , a ( x ) = ∑ i a i x i gcd ( a 0 , … , a n ) = 1 a ( x ) ∈ R [ x ] − ⟺ a ( x ) ∈ F [ x ] − \begin{align*}
&\sphericalangle \\
&R \in \mathcal R ^{\mathcal {UFD}} \\
&F:=\mathfrak F(R) \\
&a(x) \in R[x] \setminus R, a(x) = \sum_i a_ix^i \\
&\gcd(a_0, \ldots, a_n) = 1 \\
\hline
\\
&a(x) \in R[x]^- \iff a(x) \in F[x]^-
\end{align*} ∢ R ∈ R U F D F := F ( R ) a ( x ) ∈ R [ x ] ∖ R , a ( x ) = i ∑ a i x i g cd( a 0 , … , a n ) = 1 a ( x ) ∈ R [ x ] − ⟺ a ( x ) ∈ F [ x ] −
Proof
Remember, from the note to the irreducible element defintion, we have F [ x ] = { 0 } ∪ F ∗ ∪ F [ x ] − ∪ F [ x ] + , R [ x ] = { 0 } ∪ R ∗ ∪ R [ x ] − ∪ R [ x ] + F[x] = \{0\} \cup F^* \cup F[x]^- \cup F[x]^+, R[x]= \{0\} \cup R^* \cup R[x]^- \cup R[x]^+ F [ x ] = { 0 } ∪ F ∗ ∪ F [ x ] − ∪ F [ x ] + , R [ x ] = { 0 } ∪ R ∗ ∪ R [ x ] − ∪ R [ x ] + and all sets are disjoint.
Thus, the statement a ( x ) ∈ R [ x ] − ⟺ a ( x ) ∈ F [ x ] − a(x) \in R[x]^- \iff a(x) \in F[x]^- a ( x ) ∈ R [ x ] − ⟺ a ( x ) ∈ F [ x ] − is equivalent to proving:
a ( x ) ∈ R ∗ ∪ { 0 } ⟺ a ( x ) ∈ F ∗ ∪ { 0 } a(x) \in R^* \cup \{0\} \iff a(x)\in F^* \cup \{0\} a ( x ) ∈ R ∗ ∪ { 0 } ⟺ a ( x ) ∈ F ∗ ∪ { 0 }
a ( x ) ∈ R [ x ] + ⟺ a ( x ) ∈ F [ x ] + a(x) \in R[x]^+ \iff a(x)\in F[x]^+ a ( x ) ∈ R [ x ] + ⟺ a ( x ) ∈ F [ x ] +
We don't need to prove the first one, as the theorem preconditions state that we only consider a ( x ) ∈ R [ x ] ∖ R a(x) \in R[x] \setminus R a ( x ) ∈ R [ x ] ∖ R .
Thus, all we need to prove is a ( x ) ∈ R [ x ] + ⟺ a ( x ) ∈ F [ x ] + a(x) \in R[x]^+ \iff a(x)\in F[x]^+ a ( x ) ∈ R [ x ] + ⟺ a ( x ) ∈ F [ x ] +
⟹ \implies ⟹
It's obvious that:
∀ p ( x ) ∈ R [ x ] ∖ R ⟹ p ( x ) ∈ F [ x ] ∖ F \forall p(x) \in R[x] \setminus R \implies p(x) \in F[x] \setminus F ∀ p ( x ) ∈ R [ x ] ∖ R ⟹ p ( x ) ∈ F [ x ] ∖ F
Now we have:
a ( x ) ∈ R [ x ] + ⟹ ∃ b ( x ) , c ( x ) ∈ R [ x ] ∖ ( R ∗ ∪ { 0 } ) : a ( x ) = b ( x ) c ( x ) a(x) \in R[x]^+ \implies \\
\exists b(x), c(x) \in R[x] \setminus (R^* \cup \{0\}): a(x) = b(x)c(x) \\ a ( x ) ∈ R [ x ] + ⟹ ∃ b ( x ) , c ( x ) ∈ R [ x ] ∖ ( R ∗ ∪ { 0 }) : a ( x ) = b ( x ) c ( x )
From our theorem preconditions a ( x ) ∈ R [ x ] ∖ R a(x) \in R[x] \setminus R a ( x ) ∈ R [ x ] ∖ R , as a result - a ( x ) ∈ F [ x ] ∖ F a(x) \in F[x] \setminus F a ( x ) ∈ F [ x ] ∖ F .
Next we want to prove that b ( x ) , c ( x ) ∈ R [ x ] ∖ R b(x), c(x) \in R[x] \setminus R b ( x ) , c ( x ) ∈ R [ x ] ∖ R . Assume it's not true for b ( x ) b(x) b ( x ) , then it will mean that b ( x ) b(x) b ( x ) is constant and b ( x ) = b ∈ R ∖ R ∗ ∪ { 0 } b(x) = b \in R \setminus R^* \cup \{0\} b ( x ) = b ∈ R ∖ R ∗ ∪ { 0 } . But that means that a ( x ) = b c ( x ) , b ∉ B ∗ ∪ { 0 } a(x) = b c(x), b \notin B^* \cup \{0\} a ( x ) = b c ( x ) , b ∈ / B ∗ ∪ { 0 } which contradicts the precondition gcd ( a 0 , … , a n ) = 1 \gcd(a_0, \ldots, a_n) = 1 g cd( a 0 , … , a n ) = 1 .
Thus b ( x ) , c ( x ) ∈ R [ x ] ∖ R b(x), c(x) \in R[x] \setminus R b ( x ) , c ( x ) ∈ R [ x ] ∖ R and so b ( x ) , c ( x ) ∈ F [ x ] ∖ F b(x), c(x) \in F[x] \setminus F b ( x ) , c ( x ) ∈ F [ x ] ∖ F .
Finally, taking into account that F = F ∗ ∪ { 0 } F = F^* \cup \{0\} F = F ∗ ∪ { 0 } we can write:
a ( x ) ∈ R [ x ] ∖ R , ∃ b ( x ) , c ( x ) ∈ R [ x ] ∖ R : a ( x ) = b ( x ) c ( x ) ⟹ a ( x ) ∈ F [ x ] ∖ F , ∃ b ( x ) , c ( x ) ∈ F [ x ] ∖ F : a ( x ) = b ( x ) c ( x ) ⟹ a ( x ) ∈ F [ x ] + a(x) \in R[x] \setminus R, \exists b(x), c(x) \in R[x] \setminus R: a(x) = b(x)c(x) \implies \\
a(x) \in F[x] \setminus F, \exists b(x), c(x) \in F[x] \setminus F: a(x) = b(x)c(x) \implies \\
a(x) \in F[x]^+ a ( x ) ∈ R [ x ] ∖ R , ∃ b ( x ) , c ( x ) ∈ R [ x ] ∖ R : a ( x ) = b ( x ) c ( x ) ⟹ a ( x ) ∈ F [ x ] ∖ F , ∃ b ( x ) , c ( x ) ∈ F [ x ] ∖ F : a ( x ) = b ( x ) c ( x ) ⟹ a ( x ) ∈ F [ x ] +
⟸ \impliedby ⟸
Follows from ( 2.5.6. b ) (2.5.6.b) ( 2.5.6. b )
□ \square □
Proposition 2.5.9 Polynomials over UFD is UFD
R ∈ R U F D ⟹ R [ x ] ∈ R U F D R \in \mathcal R^{\mathcal {UFD}} \implies R[x] \in \mathcal R^{\mathcal {UFD}} R ∈ R U F D ⟹ R [ x ] ∈ R U F D
Proof
Only for this proof, we'll adopt the notation gcd a ( x ) = gcd ( a 0 , … , a n ) \gcd a(x)=\gcd(a_0, \ldots, a_n) g cda ( x ) = g cd( a 0 , … , a n ) , where a ( x ) = a 0 + … + a n x n a(x)=a_0+\ldots+a_nx^n a ( x ) = a 0 + … + a n x n .
Consider a ( x ) ∈ R [ x ] ∖ ( R ∗ ∪ { 0 } ) a(x) \in R[x] \setminus (R^* \cup \{0\}) a ( x ) ∈ R [ x ] ∖ ( R ∗ ∪ { 0 }) and define
b ( x ) : = a ( x ) / gcd ( a ( x ) ) b(x):= a(x) / \gcd(a(x)) b ( x ) := a ( x ) / g cd( a ( x ))
Now note that since R ∈ R U F D R \in \mathcal R^{\mathcal {UFD}} R ∈ R U F D , gcd a ( x ) \gcd a(x) g cda ( x ) can be uniquely factored into irreducibles in R R R and thus irreducibles in R [ x ] R[x] R [ x ] . Thus, all we need to prove that b ( x ) b(x) b ( x ) with gcd b ( x ) = 1 \gcd b(x)=1 g cdb ( x ) = 1 can be uniquely factored into irreducibles. Then a ( x ) = b ( x ) gcd a ( x ) a(x) = b(x)\gcd a(x) a ( x ) = b ( x ) g cda ( x ) both of which are factored into irreducibles.
Existence
Let's make a notation F : = F ( R ) F:= \mathfrak F(R) F := F ( R ) . It's clear that should the b ( x ) ∈ R b(x) \in R b ( x ) ∈ R , it's uniquely factorized because R ∈ R U F D R \in \mathcal R^{\mathcal {UFD}} R ∈ R U F D and we're done. So we consider the case b ( x ) ∈ R [ x ] ∖ R b(x) \in R[x] \setminus R b ( x ) ∈ R [ x ] ∖ R . Since b ( x ) b(x) b ( x ) is non-constant in R [ x ] R[x] R [ x ] , it's also non-constant in F [ x ] F[x] F [ x ] , in other words:
b ( x ) ∈ R [ x ] ∖ R ⟹ b ( x ) ∈ F [ x ] ∖ F b(x) \in R[x] \setminus R \implies b(x) \in F[x] \setminus F \\ b ( x ) ∈ R [ x ] ∖ R ⟹ b ( x ) ∈ F [ x ] ∖ F
Next,
( 2.5.12 ) , ( 2.4.17 ) , ( 2.4.18 ) ⟹ F [ x ] ∈ R U F D ⟹ ∃ p i ( x ) ∈ F [ x ] − : b ( x ) = p 1 ( x ) … p k ( x ) ⟹ ( 2.5.7 ) ∃ q 1 ( x ) , … , q k ( x ) ∈ R [ x ] ∩ F [ x ] − : b ( x ) = q 1 ( x ) … q k ( x ) (2.5.12),(2.4.17), (2.4.18) \implies F[x] \in \mathcal R^{\mathcal {UFD}} \implies \\
\exists p_i(x) \in F[x]^-: b(x) = p_1(x)\ldots p_k(x) \overset{(2.5.7)}\implies \\
\exists q_1(x),\ldots,q_k(x) \in R[x] \cap F[x]^-: b(x) = q_1(x)\ldots q_k(x) ( 2.5.12 ) , ( 2.4.17 ) , ( 2.4.18 ) ⟹ F [ x ] ∈ R U F D ⟹ ∃ p i ( x ) ∈ F [ x ] − : b ( x ) = p 1 ( x ) … p k ( x ) ⟹ ( 2.5.7 ) ∃ q 1 ( x ) , … , q k ( x ) ∈ R [ x ] ∩ F [ x ] − : b ( x ) = q 1 ( x ) … q k ( x )
Note that q i ( x ) ∈ F [ x ] − q_i(x) \in F[x]^- q i ( x ) ∈ F [ x ] − implies it's nonconstant. In particular, q i ( x ) ∈ R [ x ] ∖ R q_i(x) \in R[x] \setminus R q i ( x ) ∈ R [ x ] ∖ R . Next, it's obvious that ∀ i : gcd q i ( x ) ≠ 1 ⟹ gcd b ( x ) ≠ 1 \forall i: \gcd q_i(x) \ne 1 \implies \gcd b(x) \ne 1 ∀ i : g cdq i ( x ) = 1 ⟹ g cdb ( x ) = 1 . So we have:
gcd b ( x ) = 1 ⟹ ∀ i : gcd q i ( x ) = 1 ⟹ ( 2.5.8 ) , q i ∈ F [ x ] − , q i ∈ R [ x ] ∖ R ∀ i : q i ( x ) ∈ R [ x ] − \gcd b(x) = 1 \implies \forall i: \gcd q_i(x) = 1 \overset{(2.5.8), q_i \in F[x]^-, q_i \in R[x]\setminus R}\implies \forall i: q_i(x) \in R[x]^- g cdb ( x ) = 1 ⟹ ∀ i : g cdq i ( x ) = 1 ⟹ ( 2.5.8 ) , q i ∈ F [ x ] − , q i ∈ R [ x ] ∖ R ∀ i : q i ( x ) ∈ R [ x ] −
Uniqueness
Assume b ( x ) = p 1 ( x ) … p r ( x ) = q 1 ( x ) … q s ( x ) , q i , p j ∈ R [ x ] − b(x) = p_1(x)\ldots p_r(x)=q_1(x)\ldots q_s(x), q_i, p_j \in R[x]^- b ( x ) = p 1 ( x ) … p r ( x ) = q 1 ( x ) … q s ( x ) , q i , p j ∈ R [ x ] − .
gcd b ( x ) = 1 ⟹ gcd q i = 1 , gcd p j = 1 ⟹ ( 2.5.8 ) q i ∈ F [ x ] − , p j ∈ F [ x ] − ⟹ F [ x ] ∈ R U F D r = s , q i ( x ) = c i p j ( x ) , c i ∈ F ⟹ a i q i ( x ) = b i p j ( x ) = m ( x ) , a i , b i ∈ R \gcd b(x)=1 \implies \gcd q_i = 1, \gcd p_j = 1 \overset{(2.5.8)}{\implies} q_i \in F[x]^-, p_j \in F[x]^- \overset{F[x] \in \mathcal R^{\mathcal {UFD}}}{\implies} \\
r = s, q_i(x)=c_ip_j(x), c_i \in F \implies a_iq_i(x) = b_ip_j(x)=m(x), a_i, b_i \in R
g cdb ( x ) = 1 ⟹ g cdq i = 1 , g cdp j = 1 ⟹ ( 2.5.8 ) q i ∈ F [ x ] − , p j ∈ F [ x ] − ⟹ F [ x ] ∈ R U F D r = s , q i ( x ) = c i p j ( x ) , c i ∈ F ⟹ a i q i ( x ) = b i p j ( x ) = m ( x ) , a i , b i ∈ R
So we have gcd ( m 0 , … , m n ) = a i , gcd ( m 0 , … , m n ) = b i \gcd(m_0, \ldots, m_n)=a_i, \gcd(m_0, \ldots, m_n)=b_i g cd( m 0 , … , m n ) = a i , g cd( m 0 , … , m n ) = b i for coefficents of a polynomial m ( x ) m(x) m ( x ) . By ( 2.4.11 ) (2.4.11) ( 2.4.11 ) , a i = u b i , u ∈ R ∗ ⟹ p j ( x ) = u q i ( x ) a_i = ub_i, u \in R^* \implies p_j(x)=uq_i(x) a i = u b i , u ∈ R ∗ ⟹ p j ( x ) = u q i ( x ) .
□ \square □
Polynomials over Noetherian rings
Proposition 2.5.10 Polynomials over Noetherian ring is Noetherian ring (Hilbert's Basis Theorem)
∢ R ∈ R N R [ x ] ∈ R N \begin{align*}
&\sphericalangle \\
& R \in \mathcal R^{\mathcal N}
\\
\hline
\\
&R[x] \in \mathcal R^{\mathcal N}
\end{align*} ∢ R ∈ R N R [ x ] ∈ R N
Proof
We'll use the following notation for this proof: L C I − 1 ( a ) LC_I^{-1}(a) L C I − 1 ( a ) means arbitrary polynomial f f f from set I I I with leading coefficent a a a .
Consider some ideal I ⊲ R R [ x ] I \lhd_R R[x] I ⊲ R R [ x ] . If we prove that it's finitely generated then by ( 2.4.9 ) (2.4.9) ( 2.4.9 ) R [ x ] ∈ R N R[x] \in \mathcal R^{\mathcal N} R [ x ] ∈ R N .
First, consider a set L : = { L C ( f ) , f ∈ I } L:=\{LC(f), f \in I\} L := { L C ( f ) , f ∈ I } . We want to prove that L ⊲ R R L \lhd_R R L ⊲ R R :
0 ∈ I ⟹ 0 ∈ L ⟹ L ≠ ∅ ∀ a , b ∈ L , r ∈ R : f ( x ) : = L C I − 1 ( a ) , g ( x ) : = L C I − 1 ( b ) , d : = deg f , e : = deg g , h ( x ) : = r x e f ( x ) − x d g ( x ) ⟹ L T ( h ) = r x e L T ( f ( x ) ) − x d L T ( g ( x ) ) ⟹ L C ( h ) = r a − b { r a − b = 0 ⟹ 0 ∈ L r a − b ∈ L r a − b ≠ 0 ⟹ r a − b = L C ( h ) , h ∈ I ⟹ r a − b ∈ L 0 \in I \implies 0 \in L \implies L \ne \empty \\
\forall a, b \in L, r \in R: \\
f(x):= LC^{-1}_I(a), g(x):= LC^{-1}_I(b), d:= \deg f, e:=\deg g,\\ h(x):=rx^ef(x)-x^dg(x) \implies \\
LT(h)=rx^eLT(f(x))-x^dLT(g(x)) \implies LC(h)=ra-b \\
\begin{cases}
ra-b = 0 \overset{0 \in L}\implies ra-b \in L\\
ra-b \ne 0 \implies ra-b=LC(h), h \in I \implies ra-b \in L
\end{cases} 0 ∈ I ⟹ 0 ∈ L ⟹ L = ∅ ∀ a , b ∈ L , r ∈ R : f ( x ) := L C I − 1 ( a ) , g ( x ) := L C I − 1 ( b ) , d := deg f , e := deg g , h ( x ) := r x e f ( x ) − x d g ( x ) ⟹ L T ( h ) = r x e L T ( f ( x )) − x d L T ( g ( x )) ⟹ L C ( h ) = r a − b { r a − b = 0 ⟹ 0 ∈ L r a − b ∈ L r a − b = 0 ⟹ r a − b = L C ( h ) , h ∈ I ⟹ r a − b ∈ L
Thus we proved that L ⊲ R R L \lhd_R R L ⊲ R R .
L ⊲ R R , R ∈ R N ⟹ ( 2.4.9 ) ∃ a 1 , … , a n ∈ L : ⟨ a 1 , . . . , a n ⟩ I = L f i : = L C I − 1 ( a i ) , e i : = deg f i , N : = max i e i ∀ d ≤ N − 1 : L d : = { L C ( f ) , f ∈ I , deg f = d } ∪ { 0 } L \lhd_R R, R \in \mathcal R^{\mathcal N} \overset{(2.4.9)}\implies \exists a_1, \ldots, a_n \in L: \lang a_1, ..., a_n\rang_I = L \\
f_i :=LC_I^{-1}(a_i), e_i:=\deg f_i, N:=\max_i e_i \\
\forall d \le N-1: L_d:=\{LC(f), f \in I, \deg f = d\} \cup \{0\} L ⊲ R R , R ∈ R N ⟹ ( 2.4.9 ) ∃ a 1 , … , a n ∈ L : ⟨ a 1 , ... , a n ⟩ I = L f i := L C I − 1 ( a i ) , e i := deg f i , N := i max e i ∀ d ≤ N − 1 : L d := { L C ( f ) , f ∈ I , deg f = d } ∪ { 0 }
Similarly to L ⊲ R R L \lhd_R R L ⊲ R R we can prove L d ⊲ R R L_d \lhd_R R L d ⊲ R R .
L d ⊲ R R , R ∈ R N ⟹ ( 2.4.9 ) ∃ b d , 1 , … , b d , n d ∈ L d : ⟨ b d , 1 , … , b d , n d ⟩ I = L d f d , i : = L C I − 1 ( b d , i ) L_d \lhd_R R, R \in \mathcal R^{\mathcal N} \overset{(2.4.9)}\implies \exists b_{d,1}, \ldots, b_{d,n_d} \in L_d: \\
\lang b_{d,1}, \ldots, b_{d,n_d}\rang_I = L_d \\
f_{d, i} :=LC_I^{-1}(b_{d,i}) L d ⊲ R R , R ∈ R N ⟹ ( 2.4.9 ) ∃ b d , 1 , … , b d , n d ∈ L d : ⟨ b d , 1 , … , b d , n d ⟩ I = L d f d , i := L C I − 1 ( b d , i )
Consider I 1 : = ⟨ { f 1 , … , f n } ∪ { f d , i , 0 ≤ d < N , 1 ≤ i ≤ n d } ⟩ I I_1:= \lang \{f_1, \ldots, f_n\} \cup \{f_{d,i}, 0\le d<N, 1 \le i \le n_d\}\rang_I I 1 := ⟨{ f 1 , … , f n } ∪ { f d , i , 0 ≤ d < N , 1 ≤ i ≤ n d } ⟩ I and let's prove that I = I 1 I = I_1 I = I 1 .
Since every polynomial in I 1 I_1 I 1 is by design from I I I , we have I 1 ⊆ I I_1 \subseteq I I 1 ⊆ I . Assume I 1 ≠ I I_1 \ne I I 1 = I , define:
f : = arg min deg h I ∖ I 1 , d : = deg f , a : = L C ( f ) f:= \argmin_{\deg h} I \setminus I_1, d:= \deg f, a:=LC(f) f := d e g h arg min I ∖ I 1 , d := deg f , a := L C ( f )
We want to build some polynomial g g g with the following properties:
g ∈ I 1 , deg g = deg f , L C ( f ) = L C ( g ) g \in I_1, \deg g = \deg f, LC(f) = LC(g) g ∈ I 1 , deg g = deg f , L C ( f ) = L C ( g )
Assume d ≥ N d \ge N d ≥ N :
f ∈ I ⟹ a ∈ L ⟹ L ⊲ R R , R ∈ R N ∃ r 1 , … r n ∈ R : a = r 1 a 1 + … + r n a n g : = r 1 x d − e 1 f 1 + … + r n x d − e n f n ⟹ g ∈ I 1 , deg g = deg f = d , L C ( f ) = a = r 1 a 1 + … + r n a n = L C ( g ) f \in I \implies a \in L \overset{L \lhd_R R, R \in \mathcal R^{\mathcal N}}\implies \exists r_1, \ldots r_n \in R:a = r_1a_1 + \ldots + r_na_n \\
g:= r_1x^{d-e_1}f_1+\ldots+r_nx^{d-e_n}f_n \implies \\
g \in I_1, \deg g = \deg f = d, LC(f) = a = r_1a_1 + \ldots + r_na_n = LC(g) f ∈ I ⟹ a ∈ L ⟹ L ⊲ R R , R ∈ R N ∃ r 1 , … r n ∈ R : a = r 1 a 1 + … + r n a n g := r 1 x d − e 1 f 1 + … + r n x d − e n f n ⟹ g ∈ I 1 , deg g = deg f = d , L C ( f ) = a = r 1 a 1 + … + r n a n = L C ( g )
Assume d < N d < N d < N :
∃ d : a ∈ L d ⟹ ∃ r 1 , … r n ∈ R : a = r 1 b d , 1 + … + r n b d , n ⟹ g : = r 1 f d , 1 + … + r n d f d , n d ⟹ g ∈ I 1 , deg g = deg f , L C ( f ) = L C ( g ) \exists d: a \in L_d \implies \exists r_1, \ldots r_n \in R: a = r_1b_{d, 1}+\ldots+r_nb_{d, n} \implies \\
g:=r_1f_{d, 1} + \ldots + r_{n_d}f_{d, n_d} \implies \\
g \in I_1, \deg g = \deg f, LC(f) = LC(g) ∃ d : a ∈ L d ⟹ ∃ r 1 , … r n ∈ R : a = r 1 b d , 1 + … + r n b d , n ⟹ g := r 1 f d , 1 + … + r n d f d , n d ⟹ g ∈ I 1 , deg g = deg f , L C ( f ) = L C ( g )
Now that we constructed a polynomial g g g , let's see why it's existence is a contradiction to the assumption I ≠ I 1 I \ne I_1 I = I 1 .
If we had f − g ∈ I 1 f-g \in I_1 f − g ∈ I 1 then g ∈ I 1 ⟹ f ∈ I 1 g\in I_1 \implies f \in I_1 g ∈ I 1 ⟹ f ∈ I 1 , but we know that f ∈ I ∖ I 1 f \in I \setminus I_1 f ∈ I ∖ I 1 , so this is a contradiction. So we established that f − g ∉ I 1 f-g \notin I_1 f − g ∈ / I 1 .
On the other hand f − g ∈ I f-g \in I f − g ∈ I , so we have f − g ∈ I ∖ I 1 f-g \in I \setminus I_1 f − g ∈ I ∖ I 1 . But since L C ( f ) = L C ( g ) LC(f)=LC(g) L C ( f ) = L C ( g ) , we have deg ( f − g ) < deg f \deg (f-g) < \deg f deg ( f − g ) < deg f which is a contradiction to the definition of f f f .
Thus I = I 1 I=I_1 I = I 1 and I 1 I_1 I 1 is finitely generated so by ( 2.4.9 ) (2.4.9) ( 2.4.9 ) we finish the proof.
□ \square □
Polynomials over fields
Proposition 2.5.11 Division for polynomials over field
∢ F ∈ F a ( x ) , b ( x ) ∈ F [ x ] ∃ ! q ( x ) , r ( x ) ∈ F [ x ] : a ( x ) = q ( x ) b ( x ) + r ( x ) , ( r ( x ) = 0 ) ∨ ( deg r < deg b ) \begin{align*}
&\sphericalangle \\
&F \in \mathcal F\\
&a(x), b(x) \in F[x] \\
\hline
\\
&\exists! q(x), r(x) \in F[x]: \\
&a(x) = q(x)b(x)+r(x), (r(x) = 0) \vee (\deg r < \deg b)
\end{align*} ∢ F ∈ F a ( x ) , b ( x ) ∈ F [ x ] ∃ ! q ( x ) , r ( x ) ∈ F [ x ] : a ( x ) = q ( x ) b ( x ) + r ( x ) , ( r ( x ) = 0 ) ∨ ( deg r < deg b )
Proof
Existence:
If a ( x ) = 0 a(x)=0 a ( x ) = 0 , we take q ( x ) = 0 , r ( x ) = 0 q(x) =0, r(x)= 0 q ( x ) = 0 , r ( x ) = 0 .
We'll make a proof inductively on n : = deg a ( x ) n: = \deg a(x) n := deg a ( x ) . Assume a ( x ) = a 0 + a 1 x + … + a n x n , b ( x ) = b 0 + b 1 x + … + b m x m a(x)=a_0 + a_1x + \ldots + a_nx^n, b(x)=b_0 + b_1x + \ldots + b_mx^m a ( x ) = a 0 + a 1 x + … + a n x n , b ( x ) = b 0 + b 1 x + … + b m x m . If n < m n < m n < m then q ( x ) = 0 , r ( x ) = a ( x ) q(x)=0, r(x)=a(x) q ( x ) = 0 , r ( x ) = a ( x ) and we're done.
Now n ≥ m n\ge m n ≥ m , define a ′ ( x ) : = a ( x ) − a n / b m x n − m b ( x ) a'(x):=a(x)-a_n/b_mx^{n-m}b(x) a ′ ( x ) := a ( x ) − a n / b m x n − m b ( x ) Since deg a ′ < deg a \deg a' < \deg a deg a ′ < deg a , by induction:
a ′ ( x ) = q ′ ( x ) b ( x ) + r ( x ) , ( r ( x ) = 0 ) ∨ ( deg r < deg b ) ⟹ a ( x ) − a n / b m x n − m b ( x ) = q ′ ( x ) b ( x ) + r ( x ) ⟹ a ( x ) = ( q ′ ( x ) + a n / b m x n − m ) b ( x ) + r ( x ) a'(x)=q'(x)b(x) + r(x), (r(x) = 0) \vee (\deg r < \deg b) \implies \\ a(x)-a_n/b_mx^{n-m}b(x) = q'(x)b(x) + r(x) \implies \\
a(x) = (q'(x)+a_n/b_mx^{n-m})b(x)+r(x)
a ′ ( x ) = q ′ ( x ) b ( x ) + r ( x ) , ( r ( x ) = 0 ) ∨ ( deg r < deg b ) ⟹ a ( x ) − a n / b m x n − m b ( x ) = q ′ ( x ) b ( x ) + r ( x ) ⟹ a ( x ) = ( q ′ ( x ) + a n / b m x n − m ) b ( x ) + r ( x )
Uniqueness:
a ( x ) = q 1 ( x ) b ( x ) + r 1 ( x ) = q 2 ( x ) b ( x ) + r 2 ( x ) ⟹ deg ( a ( x ) − q 1 ( x ) b ( x ) ) < deg b , deg ( a ( x ) − q 2 ( x ) b ( x ) ) < deg b ⟹ deg b ( x ) ( q 1 ( x ) − q 2 ( x ) ) < deg b ⟹ deg ( q 1 ( x ) − q 2 ( x ) ) < 0 ⟹ q 1 ( x ) = q 2 ( x ) , r 1 ( x ) = r 2 ( x ) a(x)=q_1(x)b(x)+r_1(x)=q_2(x)b(x)+r_2(x) \implies \\
\deg (a(x)-q_1(x)b(x)) < \deg b, \\
\deg (a(x)-q_2(x)b(x)) < \deg b \implies \\
\deg b(x)(q_1(x) - q_2(x)) < \deg b \implies \\
\deg (q_1(x) - q_2(x)) < 0 \implies
q_1(x) = q_2(x), r_1(x) = r_2(x) a ( x ) = q 1 ( x ) b ( x ) + r 1 ( x ) = q 2 ( x ) b ( x ) + r 2 ( x ) ⟹ deg ( a ( x ) − q 1 ( x ) b ( x )) < deg b , deg ( a ( x ) − q 2 ( x ) b ( x )) < deg b ⟹ deg b ( x ) ( q 1 ( x ) − q 2 ( x )) < deg b ⟹ deg ( q 1 ( x ) − q 2 ( x )) < 0 ⟹ q 1 ( x ) = q 2 ( x ) , r 1 ( x ) = r 2 ( x )
□ \square □
Proposition 2.5.12 Polynomials over field is an Euclidean domain
∢ F ∈ F F [ x ] ∈ R E \begin{align*}
&\sphericalangle \\
&F \in \mathcal F\\
\hline
\\
&F[x] \in \mathcal R^{\mathcal E}
\end{align*} ∢ F ∈ F F [ x ] ∈ R E
Proof
We define a norm for this euclidean domain as ∀ f ∈ F ∖ { 0 } : N ( f ) : = deg f , N ( 0 ) : = 0 \forall f \in F \setminus \{0\}: N(f) := \deg f,
N(0):=0 ∀ f ∈ F ∖ { 0 } : N ( f ) := deg f , N ( 0 ) := 0 . (2.5.11) completes the proof.
Multivariate polynomials
We can define polynomial in many variables in two ways. First, stating the form of polynomial explicitly:
f ( x 1 , . . . , x n ) = ∑ i a i x 1 d i , 1 x 2 d i , 2 … x n d i , n f(x_1, ..., x_n)=\sum_i a_ix_1^{d_{i, 1}}x_2^{d_{i, 2}}\ldots x_n^{d_{i, n}} f ( x 1 , ... , x n ) = i ∑ a i x 1 d i , 1 x 2 d i , 2 … x n d i , n
The other way we can define the ring of polynomials in many variable inductively by R [ x 1 , . . . , x n ] = R [ x 1 , . . . , x n − 1 ] [ x n ] R[x_1, ..., x_n]=R[x_1, ..., x_{n-1}][x_n] R [ x 1 , ... , x n ] = R [ x 1 , ... , x n − 1 ] [ x n ] . The latter form meaning we're considering polynomials in a variable x n x_n x n , where the coefficients are in the ring R [ x 1 , … , x n − 1 ] R[x_1, \ldots, x_{n-1}] R [ x 1 , … , x n − 1 ] .
Using these defintions, we'll sum up all the propositions from the previous section in the following table:
Proposition 2.5.13: Relations of base fields and polynomial fields
R R [ x ] R [ x 1 , … , x n ] R I D R I D R I D R U F D R U F D R U F D R N R N R N F R E , R P I D R U F D \def\arraystretch{1.5}
\begin{array}{c:c:c}
R & R[x] & R[x_1, \ldots, x_n] \\ \hline
\mathcal R^{\mathcal{ID}} & \mathcal R^{\mathcal{ID}} & \mathcal R^{\mathcal{ID}} \\ \hdashline
\mathcal R^{\mathcal{UFD}} & \mathcal R^{\mathcal{UFD}} & \mathcal R^{\mathcal{UFD}} \\ \hdashline
\mathcal R^{\mathcal{N}} & \mathcal R^{\mathcal{N}} & \mathcal R^{\mathcal{N}} \\ \hdashline
\mathcal F & \mathcal R^{\mathcal E}, \mathcal R^{\mathcal {PID}} & R^{\mathcal{UFD}} \\
\end{array} R R I D R U F D R N F R [ x ] R I D R U F D R N R E , R P I D R [ x 1 , … , x n ] R I D R U F D R N R U F D