Skip to main content

2.5 Ring of polynomials

def: Polynomial

RRa0,a1,,anRan0p:xa0+a1x++anxnpR[x](ppolynomial)\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &a_0, a_1, \ldots, a_n \in R \\ &a_n \ne 0 \\ &p: x \mapsto a_0+a_1x + \ldots + a_nx^n \\ \hline \\ & p \in R[x] \,\,\, (p- \text{polynomial}) \\ \end{align*}

In gerenal the notation R[α]R[\alpha] means a minimal ring containing both RR and α\alpha. For instance Z[2]={a+b2,a,bZ}\Z[\sqrt 2] = \{a + b \sqrt 2, a, b \in \Z\}. Thus R[x]R[x] is a minimal ring that contains both RR and indeterminate xx. It can be easily seen that it's exactly the set of polynomials in one variable.

In particular, the set of all polynomial form a ring. We define the operations in the following manner. First, we need to make a convention that we pad polynomials of different degree with zeros, so they have the same number of coefficients. For example f:x3x2+2x+1f: x \mapsto 3x^2+2x+1 and g:xx+2g: x \mapsto x+2, then we say that g:x0x2+x+2g: x \mapsto 0x^2+x+2. Then the operations are defined by:

f+g=(a0+b0)+(a1+b1)x++(an+bn)xnfg:xc0+c1x++cm+nxm+nci=j=0iajbijf+g = (a_0+b_0)+(a_1+b_1)x + \ldots + (a_n+b_n)x^n \\ f\cdot g: x \mapsto c_0+c_1x+\ldots + c_{m+n}x^{m+n} \\ c_i=\sum_{j=0}^{i}a_jb_{i-j}

def: Polynomial degree

RRa0,a1,,anRan0p:xa0+a1x++anxndegp:=n(ppolynomial of degree n)deg(x0):=\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &a_0, a_1, \ldots, a_n \in R \\ &a_n \ne 0 \\ &p: x \mapsto a_0+a_1x + \ldots + a_nx^n \\ \hline \\ & \deg p := n \,\,\,(p - \text{polynomial of degree } n) \\ & \deg (x \mapsto 0) := -\infty \\ \end{align*}

def: Leading term

RRa0,a1,,anRan0p:xa0+a1x++anxnLT(p):=anxnleading termLC(p):=anleading coefficient\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &a_0, a_1, \ldots, a_n \in R \\ &a_n \ne 0 \\ &p: x \mapsto a_0+a_1x + \ldots + a_nx^n \\ \hline \\ & LT(p):=a_nx^n - \text{leading term} \\ & LC(p):=a_n - \text{leading coefficient} \\ \end{align*}

def: Monic polynomial

RRpR[x]LC(p)=1pmonic polynomial\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &p \in R[x] \\ &LC(p)=1 \\ \hline \\ &p- \text{monic polynomial} \end{align*}

def: Action on coefficents

RRpR[x]p(x)=a0+a1x++anxnpϕ(x):=ϕ(a0)++ϕ(an)xn\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &p \in R[x] \\ &p(x)= a_0+a_1x + \ldots + a_nx^n \\ \hline \\ &p^{\phi}(x):= \phi(a_0)+\ldots + \phi(a_n)x^n \end{align*}

Polynomials over commutative rings

Proposition 2.5.1: Polynomial rings with isomorphic base rings are isomorphic

R1,R2RCϕ:R1RR2ϕx:R1[x]R2[x],p(x)pϕ(x)ϕx:R1[x]RR2[x]ϕ:R1RR2    R1[x]ϕxR2[x]\begin{align*} &\sphericalangle \\ &R_1, R_2 \in \mathcal R^{\mathcal C} \\ &\phi: R_1 \rightsquigarrow_R R_2 \\ &\phi_x: R_1[x] \to R_2[x], p(x) \mapsto p^{\phi}(x) \\ \hline \\ &\begin{align*} & \phi_x: R_1[x] \rightsquigarrow_R R_2[x] \hspace{0.5cm} \tag{a}\\ &\phi: R_1 \cong_R R_2 \implies R_1[x] \overset{\phi_x}\cong R_2[x] \hspace{0.5cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

Further we'll assume that the two polynomials are of the same degree. If not, we just pad one of them with zeros.

Let's prove R1[x]ϕxR2[x]R_1[x] \overset{\phi_x}\rightsquigarrow R_2[x]:

ϕx(a0++anxn+b0++bnxn)=ϕ(a0+b0)++ϕ(an+bn)xn=ϕ(a0)++ϕ(an)xn+ϕ(b0)++ϕ(bn)xn=ϕx(a0++anxn)+ϕx(b0++bnxn)\phi_x(a_0+\ldots +a_nx^n + b_0+\ldots +b_nx^n)= \\ \phi(a_0+b_0)+\ldots+\phi(a_n+b_n)x^n=\\ \phi(a_0)+\ldots + \phi(a_n)x^n+\phi(b_0)+\ldots + \phi(b_n)x^n=\\ \phi_x(a_0+\ldots +a_nx^n)+\phi_x(b_0+\ldots +b_nx^n) ϕx((a0++anxn)(b0++bnxn))=ϕ(a0b0)++ϕ(i=0kaibki)xk++ϕ(anbn)x2n=ϕ(a0)ϕ(b0)++i=0kϕ(ai)ϕ(bki)xk++ϕ(an)ϕ(bn)x2n=(ϕ(a0)++ϕ(an)xn)(ϕ(b0)++ϕ(bn)xn)=ϕx(a0++anxn)ϕx(b0++bnxn)\phi_x((a_0+\ldots +a_nx^n) \cdot (b_0+\ldots +b_nx^n))=\\ \phi(a_0b_0)+\ldots+\phi(\sum_{i=0}^ka_ib_{k-i})x^k + \ldots + \phi(a_nb_n)x^{2n}=\\ \phi(a_0)\phi(b_0)+\ldots+\sum_{i=0}^k\phi(a_i)\phi(b_{k-i})x^k + \ldots + \phi(a_n)\phi(b_n)x^{2n}= \\ (\phi(a_0)+\ldots +\phi(a_n)x^n)\cdot (\phi(b_0)+\ldots +\phi(b_n)x^n) = \\ \phi_x(a_0+\ldots +a_nx^n) \cdot \phi_x(b_0+\ldots +b_nx^n)

b.

Obviously ϕx:R1[x]R2[x]\phi_x: R_1[x] \leftrightarrow R_2[x]

\square

note

We'll use the notation ϕx\phi_x to denote the homomorphism that maps coefficents of polynomials using ϕ\phi

Polynomials over integral domains

Proposition 2.5.2 Degree of a polynomials product

RRIDf,gR[x]{0}:degfg=degf+degg\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &\forall f, g \in R[x] \setminus \{0\}: \deg fg=\deg f+\deg g \end{align*}

Proof

f,gR[x] {0}:LT(f)=anxn,LT(g)=bmxm:LT(fg)=LT(f)LT(g)=anbmxn+m    RRIDLT(fg)0    degfg=degf+degg\forall f, g \in R[x] \ \setminus \{0\}: LT(f)=a_nx^n, LT(g)=b_mx^m: \\ LT(fg)=LT(f)\cdot LT(g) = a_nb_mx^{n+m} \overset{R \in R^{\mathcal {ID}}}{\implies} LT(fg) \ne 0 \implies \\ \deg fg=\deg f+\deg g \\

\square

Example: Degree of a product over non-integral domain

In Z6\Z_6 we have 2x3x=02x \cdot 3x = 0, so obviously deg2x+deg3xdeg2x3x\deg 2x + \deg 3x \ne \deg 2x \cdot 3x.

Proposition 2.5.3 Units for polynomials

RRIDR[x]=R\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &R[x]^* = R^* \end{align*}

Proof

RR[x]R^* \subseteq R[x]^* is obvious. Let's prove RR[x]R^* \supseteq R[x]^*:

fR[x]    gR[x]:fg=1    degf+degg=deg1=0    h0:degh0degf=0,degg=0    fR,gR,fg=1    fRf \in R[x]^* \implies \exists g \in R[x]: fg = 1 \implies \\\deg f + \deg g = \deg 1 = 0 \overset{\forall h \ne 0: \deg h \ge 0}{\implies} \deg f=0, \deg g =0 \implies \\ f \in R, g \in R, fg = 1 \implies f \in R^*

\square

Proposition 2.5.4 Polynomials over integral domain is an integral domain

RRIDR[x]RID\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &R[x] \in \mathcal R^{\mathcal {ID}} \\ \end{align*}

Proof

f,gR[x]{0}:degfg=(2.5.2)degf+degg0    fg0\forall f,g \in R[x] \setminus \{0\}: \deg fg \overset{(2.5.2)}{=} \deg f +\deg g \ge 0 \implies fg \ne 0

It's easy to see that R[x]G+AR[x] \in \mathcal G^{\mathcal A}_+. The identity in this case is 0, the inverse for iaixi\sum_ia_ix^i is i(ai)xi\sum_i(-a_i)x^i. The abelian group properties follows from the abelian group properties of RR.

Let's prove multiplicative associativity:

p:=imaixi,q:=inbixi,r:=ipcixi:(pq)r=(inaixiimbixi)ipcixi==in+m(jiaibij)xiipcixi=in+m+p[ji(kjakbjk)cij]xi=in+m+p[j+k+l=iakbjcl]xip := \sum_i^ma_ix^i, q := \sum_i^nb_ix^i, r:=\sum_i^pc_ix^i: \\ (pq)r = (\sum_i^na_ix^i\sum_i^mb_ix^i)\sum_i^pc_ix^i = \\ = \sum_i^{n+m}(\sum_j^{i}a_ib_{i-j})x^i\sum_i^pc_ix^i = \\ \sum_i^{n+m+p}[\sum_j^i(\sum_k^ja_kb_{j-k})c_{i-j}]x^i = \\ \sum_i^{n+m+p}[\sum_{j+k+l=i}a_kb_{j}c_{l}]x^i

By the symmetry of this expression, we can see that p(qr)=in+m+p[j+k+l=iakbjcl]xip(qr)=\sum_i^{n+m+p}[\sum_{j+k+l=i}a_kb_{j}c_{l}]x^i as well. Thus, (pq)r=p(qr)(pq)r=p(qr).

Distributivity and commutativity are derived similarly.

\square

Polynomials over UFDs

Proposition 2.5.5 Factor ring for polynomials

RRCIRRR[x]/I[x](R/I)[x]IPI(R)    I[x]PI(R[x])\begin{align*} &\sphericalangle \\ &R \in \mathcal R^{\mathcal C} \\ &I \lhd_R R \\ \hline \\ &\begin{align*} &R[x] / I[x] \cong (R/I)[x] \tag{a}\\ &I \in \mathfrak P_I(R) \implies I[x] \in \mathfrak P_I(R[x]) \hspace{1cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

Consider a map ϕ:R[x](R/I)[x]\phi: R[x] \mapsto (R/I)[x] that maps coefficents to a factor ring. It's easy to show that it's a homomorphism. kerϕ=I[x]\ker \phi = I[x], thus by (2.3.9)(2.3.9) R[x]/I[x](R/I)[x]R[x] / I[x] \cong (R/I)[x].

b.

IPI(R)    (2.4.8)R/IRID    (2.5.4)(R/I)[x]RID    (a)R[x]/I[x]RID    (2.4.8)I[x]PI(R[x])I \in \mathfrak P_I(R) \overset{(2.4.8)}{\implies} R/I \in \mathcal R^{\mathcal ID} \overset{(2.5.4)}{\implies} (R/I)[x] \in \mathcal R^{\mathcal ID} \overset{(a)}{\implies} \\ R[x]/I[x] \in \mathcal R^{\mathcal ID} \overset{(2.4.8)}{\implies} I[x] \in \mathfrak P_I(R[x])

\square

Proposition 2.5.6: Gauss' lemma

RRUFDF:=F(R)pR[x]a(x),b(x)F[x]F,p(x)=a(x)b(x)    r,sF,a(x),b(x)R[x]R:a(x)=ra(x),b(x)=sb(x),p(x)=a(x)b(x)p(x)F[x]+    p(x)R[x]+\begin{align*} &\sphericalangle \\ &R \in \mathcal R ^{\mathcal {UFD}} \\ &F:=\mathfrak F(R) \\ &p \in R[x] \\ \hline \\ &\begin{align*} & a(x), b(x) \in F[x] \setminus F, p(x) = a(x)b(x) \implies \\ &\exists r, s \in F, a'(x), b'(x) \in R[x] \setminus R: \\ & a(x)=ra'(x), b(x) = sb'(x), p(x)=a'(x)b'(x) \hspace{0.5cm} \tag{a}\\ & p(x) \in F[x]^+ \implies p(x) \in R[x]^+ \tag{b}\\ \end{align*} \end{align*}

Proof

a.

a(x),b(x)F[x]F:p(x)=a(x)b(x)    dR{0}:dp(x)=a(x)b(x),a(x),b(x)R[x]Ra(x), b(x) \in {F[x] \setminus F}: p(x)=a(x)b(x) \implies \\ \exists d \in R \setminus \{0\}: dp(x)=a'(x)b'(x), a'(x), b'(x) \in R[x] \setminus R

If dRd \in R^*, then p(x)=d1a(x)b(x)p(x)=d^{-1}a'(x)b'(x) and we're done. Otherwise using the fact that RRUFDR \in \mathcal R ^{\mathcal {UFD}} we can write d=p1pn,piRd = p_1\cdot \ldots \cdot p_n, p_i \in R^-:

p1R    (2.4.12)p1P(R)    (2.4.1)pI=p1RPI(R)    (2.5.5.b)(p1R)[x]PI(R[x])    (2.4.8)R[x]/(p1R)[x]RID    (2.5.5.a)(R/p1R)[x]RIDp_1 \in R^- \overset{(2.4.12)}{\implies} p_1 \in \mathfrak P(R) \overset{(2.4.1)}\implies \lang p \rang_I = p_1R \in \mathfrak P_I(R) \overset{(2.5.5.b)}\implies \\ (p_1R)[x] \in \mathfrak P_I(R[x]) \overset{(2.4.8)}{\implies} R[x]/(p_1R)[x] \in \mathcal R^{\mathcal {ID}} \overset{(2.5.5.a)}\implies \\ (R/p_1R)[x] \in \mathcal R^{\mathcal {ID}} \\

Below we'll use the notation (mod p1p_1) to denote that only its coefficients being taken modulo p1p_1. It's important to note that this doesn't change the polynomial's function in terms of xx; it remains a part of R[x]R[x], the ring of polynomials over RR.

d0(modp1)    a(x)b(x)=dp(x)0(modp1)    (R/p1R)[x]RID(a(x)0)(b(x)0)(modp1)d \equiv 0 \pmod{p_1} \implies a'(x)b'(x)=dp(x) \equiv 0 \pmod {p_1} \overset{(R/p_1R)[x] \in \mathcal R^{\mathcal {ID}}}{\implies} \\ (a'(x) \equiv 0) \vee(b'(x) \equiv 0) \pmod {p_1}

Without loss of generality, assume a(x)0(modp1)a'(x) \equiv 0 \pmod {p_1}. Then it means that if a(x)=a0++anxna'(x)=a_0 + \ldots + a_n x^n, then i:p1ai\forall i: p_1 \mid a_i, and we can write d2p(x)=a2(x)b(x),d2=p2pnd_2p(x)=a_2(x)b(x), d_2 = p_2\cdot \ldots \cdot p_n. Continuing this process for other pnp_n, we finish the proof.

b.

Follows from (a)(a)

\square

Corrolary 2.5.7: Gauss' lemma for n factors

RRUFDF:=F(R)pR[x]p(x)=p1(x)pk(x),pi(x)F[x]Fq1(x),,qk(x)R[x],r1,rkF:p(x)=q1(x)qk(x),qi(x)=ripi(x)pi(x)F[x]    qi(x)F[x]pi(x)F[x]+    qi(x)F[x]+\begin{align*} &\sphericalangle \\ &R \in \mathcal R ^{\mathcal {UFD}} \\ &F:=\mathfrak F(R) \\ &p \in R[x] \\ &p(x) = p_1(x)\ldots p_k(x), p_i(x) \in F[x]\setminus F\\ \hline \\ &\exists q_1(x), \ldots, q_k(x) \in R[x], r_1, \ldots r_k \in F: \\ &\begin{align*} & p(x)=q_1(x)\ldots q_k(x), q_i(x)=r_ip_i(x) \hspace{1cm} \tag{a}\\ & p_i(x) \in F[x]^- \implies q_i(x) \in F[x]^- \tag{b}\\ & p_i(x) \in F[x]^+ \implies q_i(x) \in F[x]^+ \tag{c}\\ \end{align*} \end{align*}

Proof

a.

If k=1k=1, then obviously q1(x)=r1p1(x)q_1(x)=r_1p_1(x) and we're done.

If k=nk=n, consider p12(x):=p1(x)p2(x)p_{12}(x):=p_1(x)p_2(x). By (2.5.6)(2.5.6) q1(x)q2(x)R[x]:p12(x)=q1(x)q2(x)\exists q_1(x)q_2(x) \in R[x]: p_{12}(x)=q_1(x)q_2(x). Thus we can write p(x)=q1(x)q2(x)p3(x)pk(x)p(x)=q_1(x)q_2(x)p_3(x)\ldots p_k(x). Now note that by (2.5.6)(2.5.6): q2(x)=rp2(x),rF,p2(x)F[x]F    q2(x)F[x]Fq_2(x) = rp_2(x), r \in F, p_2(x) \in F[x] \setminus F \implies q_2(x) \in F[x] \setminus F. So we can continue with p23(x)=q2(x)p3(x)p_{23}(x)=q_2(x)p_3(x).

Continuing this process, we finish the proof

b, c.

Follows trivially from (a)(a) because qi(x)=cipi(x),ciFq_i(x)=c_ip_i(x), c_i \in F.

\square

Corrolary 2.5.8: Irreducibility for primary polynomials

RRUFDF:=F(R)a(x)R[x]R,a(x)=iaixigcd(a0,,an)=1a(x)R[x]    a(x)F[x]\begin{align*} &\sphericalangle \\ &R \in \mathcal R ^{\mathcal {UFD}} \\ &F:=\mathfrak F(R) \\ &a(x) \in R[x] \setminus R, a(x) = \sum_i a_ix^i \\ &\gcd(a_0, \ldots, a_n) = 1 \\ \hline \\ &a(x) \in R[x]^- \iff a(x) \in F[x]^- \end{align*}

Proof

Remember, from the note to the irreducible element defintion, we have F[x]={0}FF[x]F[x]+,R[x]={0}RR[x]R[x]+F[x] = \{0\} \cup F^* \cup F[x]^- \cup F[x]^+, R[x]= \{0\} \cup R^* \cup R[x]^- \cup R[x]^+ and all sets are disjoint.

Thus, the statement a(x)R[x]    a(x)F[x]a(x) \in R[x]^- \iff a(x) \in F[x]^- is equivalent to proving:

  1. a(x)R{0}    a(x)F{0}a(x) \in R^* \cup \{0\} \iff a(x)\in F^* \cup \{0\}
  2. a(x)R[x]+    a(x)F[x]+a(x) \in R[x]^+ \iff a(x)\in F[x]^+

We don't need to prove the first one, as the theorem preconditions state that we only consider a(x)R[x]Ra(x) \in R[x] \setminus R.

Thus, all we need to prove is a(x)R[x]+    a(x)F[x]+a(x) \in R[x]^+ \iff a(x)\in F[x]^+

    \implies

It's obvious that:

p(x)R[x]R    p(x)F[x]F\forall p(x) \in R[x] \setminus R \implies p(x) \in F[x] \setminus F

Now we have:

a(x)R[x]+    b(x),c(x)R[x](R{0}):a(x)=b(x)c(x)a(x) \in R[x]^+ \implies \\ \exists b(x), c(x) \in R[x] \setminus (R^* \cup \{0\}): a(x) = b(x)c(x) \\

From our theorem preconditions a(x)R[x]Ra(x) \in R[x] \setminus R, as a result - a(x)F[x]Fa(x) \in F[x] \setminus F.

Next we want to prove that b(x),c(x)R[x]Rb(x), c(x) \in R[x] \setminus R. Assume it's not true for b(x)b(x), then it will mean that b(x)b(x) is constant and b(x)=bRR{0}b(x) = b \in R \setminus R^* \cup \{0\}. But that means that a(x)=bc(x),bB{0}a(x) = b c(x), b \notin B^* \cup \{0\} which contradicts the precondition gcd(a0,,an)=1\gcd(a_0, \ldots, a_n) = 1.

Thus b(x),c(x)R[x]Rb(x), c(x) \in R[x] \setminus R and so b(x),c(x)F[x]Fb(x), c(x) \in F[x] \setminus F.

Finally, taking into account that F=F{0}F = F^* \cup \{0\} we can write:

a(x)R[x]R,b(x),c(x)R[x]R:a(x)=b(x)c(x)    a(x)F[x]F,b(x),c(x)F[x]F:a(x)=b(x)c(x)    a(x)F[x]+a(x) \in R[x] \setminus R, \exists b(x), c(x) \in R[x] \setminus R: a(x) = b(x)c(x) \implies \\ a(x) \in F[x] \setminus F, \exists b(x), c(x) \in F[x] \setminus F: a(x) = b(x)c(x) \implies \\ a(x) \in F[x]^+

    \impliedby

Follows from (2.5.6.b)(2.5.6.b)

\square

Proposition 2.5.9 Polynomials over UFD is UFD

RRUFD    R[x]RUFDR \in \mathcal R^{\mathcal {UFD}} \implies R[x] \in \mathcal R^{\mathcal {UFD}}

Proof

note

Only for this proof, we'll adopt the notation gcda(x)=gcd(a0,,an)\gcd a(x)=\gcd(a_0, \ldots, a_n), where a(x)=a0++anxna(x)=a_0+\ldots+a_nx^n.

Consider a(x)R[x](R{0})a(x) \in R[x] \setminus (R^* \cup \{0\}) and define

b(x):=a(x)/gcd(a(x))b(x):= a(x) / \gcd(a(x))

Now note that since RRUFDR \in \mathcal R^{\mathcal {UFD}}, gcda(x)\gcd a(x) can be uniquely factored into irreducibles in RR and thus irreducibles in R[x]R[x]. Thus, all we need to prove that b(x)b(x) with gcdb(x)=1\gcd b(x)=1 can be uniquely factored into irreducibles. Then a(x)=b(x)gcda(x)a(x) = b(x)\gcd a(x) both of which are factored into irreducibles.

Existence

Let's make a notation F:=F(R)F:= \mathfrak F(R). It's clear that should the b(x)Rb(x) \in R, it's uniquely factorized because RRUFDR \in \mathcal R^{\mathcal {UFD}} and we're done. So we consider the case b(x)R[x]Rb(x) \in R[x] \setminus R. Since b(x)b(x) is non-constant in R[x]R[x], it's also non-constant in F[x]F[x], in other words:

b(x)R[x]R    b(x)F[x]Fb(x) \in R[x] \setminus R \implies b(x) \in F[x] \setminus F \\

Next,

(2.5.12),(2.4.17),(2.4.18)    F[x]RUFD    pi(x)F[x]:b(x)=p1(x)pk(x)    (2.5.7)q1(x),,qk(x)R[x]F[x]:b(x)=q1(x)qk(x)(2.5.12),(2.4.17), (2.4.18) \implies F[x] \in \mathcal R^{\mathcal {UFD}} \implies \\ \exists p_i(x) \in F[x]^-: b(x) = p_1(x)\ldots p_k(x) \overset{(2.5.7)}\implies \\ \exists q_1(x),\ldots,q_k(x) \in R[x] \cap F[x]^-: b(x) = q_1(x)\ldots q_k(x)

Note that qi(x)F[x]q_i(x) \in F[x]^- implies it's nonconstant. In particular, qi(x)R[x]Rq_i(x) \in R[x] \setminus R. Next, it's obvious that i:gcdqi(x)1    gcdb(x)1\forall i: \gcd q_i(x) \ne 1 \implies \gcd b(x) \ne 1. So we have:

gcdb(x)=1    i:gcdqi(x)=1    (2.5.8),qiF[x],qiR[x]Ri:qi(x)R[x]\gcd b(x) = 1 \implies \forall i: \gcd q_i(x) = 1 \overset{(2.5.8), q_i \in F[x]^-, q_i \in R[x]\setminus R}\implies \forall i: q_i(x) \in R[x]^-

Uniqueness

Assume b(x)=p1(x)pr(x)=q1(x)qs(x),qi,pjR[x]b(x) = p_1(x)\ldots p_r(x)=q_1(x)\ldots q_s(x), q_i, p_j \in R[x]^-.

gcdb(x)=1    gcdqi=1,gcdpj=1    (2.5.8)qiF[x],pjF[x]    F[x]RUFDr=s,qi(x)=cipj(x),ciF    aiqi(x)=bipj(x)=m(x),ai,biR\gcd b(x)=1 \implies \gcd q_i = 1, \gcd p_j = 1 \overset{(2.5.8)}{\implies} q_i \in F[x]^-, p_j \in F[x]^- \overset{F[x] \in \mathcal R^{\mathcal {UFD}}}{\implies} \\ r = s, q_i(x)=c_ip_j(x), c_i \in F \implies a_iq_i(x) = b_ip_j(x)=m(x), a_i, b_i \in R

So we have gcd(m0,,mn)=ai,gcd(m0,,mn)=bi\gcd(m_0, \ldots, m_n)=a_i, \gcd(m_0, \ldots, m_n)=b_i for coefficents of a polynomial m(x)m(x). By (2.4.11)(2.4.11), ai=ubi,uR    pj(x)=uqi(x)a_i = ub_i, u \in R^* \implies p_j(x)=uq_i(x).

\square

Polynomials over Noetherian rings

Proposition 2.5.10 Polynomials over Noetherian ring is Noetherian ring (Hilbert's Basis Theorem)

RRNR[x]RN\begin{align*} &\sphericalangle \\ & R \in \mathcal R^{\mathcal N} \\ \hline \\ &R[x] \in \mathcal R^{\mathcal N} \end{align*}

Proof

We'll use the following notation for this proof: LCI1(a)LC_I^{-1}(a) means arbitrary polynomial ff from set II with leading coefficent aa.

Consider some ideal IRR[x]I \lhd_R R[x]. If we prove that it's finitely generated then by (2.4.9)(2.4.9) R[x]RNR[x] \in \mathcal R^{\mathcal N}.

First, consider a set L:={LC(f),fI}L:=\{LC(f), f \in I\}. We want to prove that LRRL \lhd_R R:

0I    0L    La,bL,rR:f(x):=LCI1(a),g(x):=LCI1(b),d:=degf,e:=degg,h(x):=rxef(x)xdg(x)    LT(h)=rxeLT(f(x))xdLT(g(x))    LC(h)=rab{rab=0    0LrabLrab0    rab=LC(h),hI    rabL0 \in I \implies 0 \in L \implies L \ne \empty \\ \forall a, b \in L, r \in R: \\ f(x):= LC^{-1}_I(a), g(x):= LC^{-1}_I(b), d:= \deg f, e:=\deg g,\\ h(x):=rx^ef(x)-x^dg(x) \implies \\ LT(h)=rx^eLT(f(x))-x^dLT(g(x)) \implies LC(h)=ra-b \\ \begin{cases} ra-b = 0 \overset{0 \in L}\implies ra-b \in L\\ ra-b \ne 0 \implies ra-b=LC(h), h \in I \implies ra-b \in L \end{cases}

Thus we proved that LRRL \lhd_R R.

LRR,RRN    (2.4.9)a1,,anL:a1,...,anI=Lfi:=LCI1(ai),ei:=degfi,N:=maxieidN1:Ld:={LC(f),fI,degf=d}{0}L \lhd_R R, R \in \mathcal R^{\mathcal N} \overset{(2.4.9)}\implies \exists a_1, \ldots, a_n \in L: \lang a_1, ..., a_n\rang_I = L \\ f_i :=LC_I^{-1}(a_i), e_i:=\deg f_i, N:=\max_i e_i \\ \forall d \le N-1: L_d:=\{LC(f), f \in I, \deg f = d\} \cup \{0\}

Similarly to LRRL \lhd_R R we can prove LdRRL_d \lhd_R R.

LdRR,RRN    (2.4.9)bd,1,,bd,ndLd:bd,1,,bd,ndI=Ldfd,i:=LCI1(bd,i)L_d \lhd_R R, R \in \mathcal R^{\mathcal N} \overset{(2.4.9)}\implies \exists b_{d,1}, \ldots, b_{d,n_d} \in L_d: \\ \lang b_{d,1}, \ldots, b_{d,n_d}\rang_I = L_d \\ f_{d, i} :=LC_I^{-1}(b_{d,i})

Consider I1:={f1,,fn}{fd,i,0d<N,1ind}II_1:= \lang \{f_1, \ldots, f_n\} \cup \{f_{d,i}, 0\le d<N, 1 \le i \le n_d\}\rang_I and let's prove that I=I1I = I_1.

Since every polynomial in I1I_1 is by design from II, we have I1II_1 \subseteq I. Assume I1II_1 \ne I, define:

f:=arg mindeghII1,d:=degf,a:=LC(f)f:= \argmin_{\deg h} I \setminus I_1, d:= \deg f, a:=LC(f)

We want to build some polynomial gg with the following properties:

gI1,degg=degf,LC(f)=LC(g)g \in I_1, \deg g = \deg f, LC(f) = LC(g)

Assume dNd \ge N:

fI    aL    LRR,RRNr1,rnR:a=r1a1++rnang:=r1xde1f1++rnxdenfn    gI1,degg=degf=d,LC(f)=a=r1a1++rnan=LC(g)f \in I \implies a \in L \overset{L \lhd_R R, R \in \mathcal R^{\mathcal N}}\implies \exists r_1, \ldots r_n \in R:a = r_1a_1 + \ldots + r_na_n \\ g:= r_1x^{d-e_1}f_1+\ldots+r_nx^{d-e_n}f_n \implies \\ g \in I_1, \deg g = \deg f = d, LC(f) = a = r_1a_1 + \ldots + r_na_n = LC(g)

Assume d<Nd < N:

d:aLd    r1,rnR:a=r1bd,1++rnbd,n    g:=r1fd,1++rndfd,nd    gI1,degg=degf,LC(f)=LC(g)\exists d: a \in L_d \implies \exists r_1, \ldots r_n \in R: a = r_1b_{d, 1}+\ldots+r_nb_{d, n} \implies \\ g:=r_1f_{d, 1} + \ldots + r_{n_d}f_{d, n_d} \implies \\ g \in I_1, \deg g = \deg f, LC(f) = LC(g)

Now that we constructed a polynomial gg, let's see why it's existence is a contradiction to the assumption II1I \ne I_1.

If we had fgI1f-g \in I_1 then gI1    fI1g\in I_1 \implies f \in I_1, but we know that fII1f \in I \setminus I_1, so this is a contradiction. So we established that fgI1f-g \notin I_1.

On the other hand fgIf-g \in I, so we have fgII1f-g \in I \setminus I_1. But since LC(f)=LC(g)LC(f)=LC(g), we have deg(fg)<degf\deg (f-g) < \deg f which is a contradiction to the definition of ff.

Thus I=I1I=I_1 and I1I_1 is finitely generated so by (2.4.9)(2.4.9) we finish the proof.

\square

Polynomials over fields

Proposition 2.5.11 Division for polynomials over field

FFa(x),b(x)F[x]!q(x),r(x)F[x]:a(x)=q(x)b(x)+r(x),(r(x)=0)(degr<degb)\begin{align*} &\sphericalangle \\ &F \in \mathcal F\\ &a(x), b(x) \in F[x] \\ \hline \\ &\exists! q(x), r(x) \in F[x]: \\ &a(x) = q(x)b(x)+r(x), (r(x) = 0) \vee (\deg r < \deg b) \end{align*}

Proof

Existence:

If a(x)=0a(x)=0, we take q(x)=0,r(x)=0q(x) =0, r(x)= 0.

We'll make a proof inductively on n:=dega(x)n: = \deg a(x). Assume a(x)=a0+a1x++anxn,b(x)=b0+b1x++bmxm a(x)=a_0 + a_1x + \ldots + a_nx^n, b(x)=b_0 + b_1x + \ldots + b_mx^m. If n<mn < m then q(x)=0,r(x)=a(x)q(x)=0, r(x)=a(x) and we're done.

Now nmn\ge m, define a(x):=a(x)an/bmxnmb(x)a'(x):=a(x)-a_n/b_mx^{n-m}b(x) Since dega<dega\deg a' < \deg a, by induction:

a(x)=q(x)b(x)+r(x),(r(x)=0)(degr<degb)    a(x)an/bmxnmb(x)=q(x)b(x)+r(x)    a(x)=(q(x)+an/bmxnm)b(x)+r(x)a'(x)=q'(x)b(x) + r(x), (r(x) = 0) \vee (\deg r < \deg b) \implies \\ a(x)-a_n/b_mx^{n-m}b(x) = q'(x)b(x) + r(x) \implies \\ a(x) = (q'(x)+a_n/b_mx^{n-m})b(x)+r(x)

Uniqueness:

a(x)=q1(x)b(x)+r1(x)=q2(x)b(x)+r2(x)    deg(a(x)q1(x)b(x))<degb,deg(a(x)q2(x)b(x))<degb    degb(x)(q1(x)q2(x))<degb    deg(q1(x)q2(x))<0    q1(x)=q2(x),r1(x)=r2(x)a(x)=q_1(x)b(x)+r_1(x)=q_2(x)b(x)+r_2(x) \implies \\ \deg (a(x)-q_1(x)b(x)) < \deg b, \\ \deg (a(x)-q_2(x)b(x)) < \deg b \implies \\ \deg b(x)(q_1(x) - q_2(x)) < \deg b \implies \\ \deg (q_1(x) - q_2(x)) < 0 \implies q_1(x) = q_2(x), r_1(x) = r_2(x)

\square

Proposition 2.5.12 Polynomials over field is an Euclidean domain

FFF[x]RE\begin{align*} &\sphericalangle \\ &F \in \mathcal F\\ \hline \\ &F[x] \in \mathcal R^{\mathcal E} \end{align*}

Proof

We define a norm for this euclidean domain as fF{0}:N(f):=degf,N(0):=0\forall f \in F \setminus \{0\}: N(f) := \deg f, N(0):=0. (2.5.11) completes the proof.

Multivariate polynomials

We can define polynomial in many variables in two ways. First, stating the form of polynomial explicitly:

f(x1,...,xn)=iaix1di,1x2di,2xndi,nf(x_1, ..., x_n)=\sum_i a_ix_1^{d_{i, 1}}x_2^{d_{i, 2}}\ldots x_n^{d_{i, n}}

The other way we can define the ring of polynomials in many variable inductively by R[x1,...,xn]=R[x1,...,xn1][xn]R[x_1, ..., x_n]=R[x_1, ..., x_{n-1}][x_n]. The latter form meaning we're considering polynomials in a variable xnx_n, where the coefficients are in the ring R[x1,,xn1]R[x_1, \ldots, x_{n-1}].

Using these defintions, we'll sum up all the propositions from the previous section in the following table:

Proposition 2.5.13: Relations of base fields and polynomial fields

RR[x]R[x1,,xn]RIDRIDRIDRUFDRUFDRUFDRNRNRNFRE,RPIDRUFD\def\arraystretch{1.5} \begin{array}{c:c:c} R & R[x] & R[x_1, \ldots, x_n] \\ \hline \mathcal R^{\mathcal{ID}} & \mathcal R^{\mathcal{ID}} & \mathcal R^{\mathcal{ID}} \\ \hdashline \mathcal R^{\mathcal{UFD}} & \mathcal R^{\mathcal{UFD}} & \mathcal R^{\mathcal{UFD}} \\ \hdashline \mathcal R^{\mathcal{N}} & \mathcal R^{\mathcal{N}} & \mathcal R^{\mathcal{N}} \\ \hdashline \mathcal F & \mathcal R^{\mathcal E}, \mathcal R^{\mathcal {PID}} & R^{\mathcal{UFD}} \\ \end{array}