Skip to main content

2.10 Finite fields

In this section, we will delve into the study of finite fields, which play a key role in cryptography.

Proposition 2.10.1: The characteristic of finite field

FFF<char F=ppP\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &|F| < \infty\\ &\text{char }F = p \\ \hline \\ &p \in \mathfrak P \end{align*}

Proof

Remember that by (2.4.5)(2.4.5) each field has either prime or zero characteristic. Obviously finite fields cannot have zero characteristic so pPp \in \mathfrak P.

\square

Proposition 2.10.2: The order of finite field

FFF<char F=pFF:FFFpF=pn,nN\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &|F| < \infty\\ &\text{char }F = p \\ \hline \\ &\begin{align*} &\exists F' \subseteq F: F' \cong_F \mathbb F_p \hspace{0.5cm} \tag{a}\\ &|F|=p^n, n \in \N \hspace{0.5cm} \tag{b}\\ \end{align*} & \end{align*}

Proof

a., b.

Define ϕ:ZRF,n1+1++1n times\phi: \Z \rightsquigarrow_R F, n \mapsto \underbrace{1 + 1 + \ldots + 1}_{n\text{ times}} (it's easy to check that this is indeed a ring homomorphism). Then kerϕ=pZ\ker \phi = p\Z. So by (2.3.9)(2.3.9) we have Fp=Z/pZRϕ(Z)F\mathbb F_p=\Z/p\Z \cong_R \phi(\Z) \subseteq F and ϕ(1)=1\phi(1)=1. Denote F:=ϕ(Z)F':=\phi(\Z). Since FF is finite [F:F]=n<[F:F'] = n < \infty for some nn. Finally if we count all vectors in FF over FF' then it will be exactly pnp^n.

\square

def: Frobenius endomorphism

FFchar F=pρk:FF,xxpkρkFrobenius endomorphism\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &\text{char } F= p \\ &\rho^k: F \to F, x \mapsto x^{p^k} \\ \hline \\ &\rho^k - \text{Frobenius endomorphism} \\ \end{align*}
note

It's easy to see that ρm+n=ρmρn\rho^{m+n}=\rho^{m}\rho^{n}

note

We'll prove that this is indeed a homomorphism below

Proposition 2.10.3: Frobenius action on polynomials

FFchar F=pp(x1,,xn)F[x1,,xn]ρk(p(a1,,an))=pρk(ρk(a1),,ρk(an)),aiF\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &\text{char } F= p \\ &p(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n] \\ \hline \\ &\rho^k(p(a_1, \ldots, a_n))=p^{\rho^k}(\rho^k(a_1), \ldots, \rho^k(a_n)), a_i \in F \end{align*}

Proof

Notice that in ρk(p(a1,,an))=(ibia1d1,iakidki,i)pk\rho^k(p(a_1, \ldots, a_n))=(\sum_i b_i a_1^{d_{1, i}} \cdot \ldots \cdot a_{k_i}^{d_{k_i, i}})^{p^k} any cross term will have a factor of pkp^k but char F=p\text{char }F = p, so pk=0p^k=0 in FF. So any cross-term will be 00 and we finish the proof.

\square

Proposition 2.10.5: Finite field as extension of Fp\mathbb F_p

FFF=pnFFp(xpnx)F/GalFpGal(F/Fp)=ρGGal(F/Fp)=n\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &|F| = p^n \\ \hline \\ &\begin{align*} &F \cong \mathbb F_p(\parallel x^{p^n}-x) \hspace{0.5cm} \tag{a}\\ &F/_{\text{Gal}} \mathbb F_p \hspace{0.5cm} \tag{b}\\ & \text{Gal}(F/\mathbb F_p) = \lang \rho \rang_G \hspace{0.5cm} \tag{c}\\ & |\text{Gal}(F/\mathbb F_p)| = n \hspace{0.5cm} \tag{d}\\ \end{align*} \end{align*}

Proof

a.

Consider F=pn1|F^*|=p^n-1 and some aFa \in F^*. Since a(G,)F=pn1|\lang a \rang_{(G, \cdot)}| \mid |F^*|= p^n-1 we know that apn1=1a^{p^n-1}=1 or apn=aa^{p^n}=a. Note that this equation holds for a=0a=0 as well, so the polynomial p(x)=xpnxp(x)=x^{p^n}-x has exactly pnp^n roots, each root is a distinct element from FF.

By (2.4.5)(2.4.5) the characteristic is either prime or 00. Obviously it cannot be 00 and since characteristic is the additive order of 11 it must divide pnp^n so char F=p\text{char } F = p. So by (2.10.2.a)(2.10.2.a) we have some FF,FFpF' \subseteq F, F' \cong \mathbb F_p.

Finally using theorem (2.8.11)(2.8.11) with F1=Fp,F2=F,p=xpnxF_1=\mathbb F_p, F_2=F', p = x^{p^n}-x we finish the proof.

b.

F=Fp(xpnx)F=\mathbb F_p(\parallel x^{p^n}-x) so by definition F/FpF/_\lhd \mathbb F_p. From (a)(a) it has disctinct roots so F/FpF/_\boxminus \mathbb F_p. By (2.9.15)(2.9.15) we have F/GalFpF/_{\text{Gal}} \mathbb F_p.

c.

To prove that ρEndF(F)\rho \in \text{End}_F(F), take p1(x,y)=x+yp_1(x,y)=x+y and p2(x,y)=xyp_2(x,y)=xy and apply (2.10.3)(2.10.3). Also obviously ρ(1)=1\rho(1)=1.

By Fermat's little theorem (2.2.10)(2.2.10) aFp:ρ(a)=a\forall a \in \mathbb F_p: \rho(a)=a. By (2.4.20.c)(2.4.20.c) we know that ρ\rho is injective and since F<|F| < \infty it's also surjective. So ρGal(F/Fp)\rho \in \text{Gal}(F/\mathbb F_p).

Denote p(x)=xpxp(x)=x^p-x then {aF:p(a)=0}=Fixρ(F)Fp\{a \in F: p(a)=0\} = \text{Fix}_\rho(F) \supseteq \mathbb F_p. But p(x)p(x) has no more than pp roots so Fixρ(F)=Fp\text{Fix}_\rho(F) = \mathbb F_p. So each power of ρ\rho fixes exactly Fp\mathbb F_p or we can write FixρG(F)=Fp\text{Fix}_{\lang \rho \rang_G}(F)=\mathbb F_p By the Fundametal theorem of Galois theory (2.9.16)(2.9.16) ρG=Gal(F/Fp)\lang \rho \rang_G = \text{Gal}(F/\mathbb F_p).

d.

(2.9.16)    n=[F:Fp]=Gal(F/Fp)(2.9.16) \implies n=[F:\mathbb F_p] = |\text{Gal}(F/\mathbb F_p)|

\square

Proposition 2.10.6: Finite field of a certain order is unique

F1,F2FF1=F2=pnF1F2\begin{align*} &\sphericalangle \\ &F_1, F_2 \in \mathcal F \\ &|F_1|=|F_2|=p^n \\ \hline \\ &F_1 \cong F_2 \end{align*}

Proof

By (2.10.5)(2.10.5) F1Fp(xpnx)F2F_1 \cong \mathbb F_p(\parallel x^{p^n}-x) \cong F_2

\square

note

We'll denote the finite field of order pnp^n by Fpn\mathbb F_{p^n}.

Corrolary 2.10.7: Finite field is perfect

FFF=pnFFP\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &|F|=p^n \\ \hline \\ &F \in \mathcal F^{\mathcal P} \end{align*}

Proof

Since ρGal(F/Fp)\rho \in \text{Gal}(F/\mathbb F_p) we have Fp=FF^p=F (note that it means that the sets are the same, not that xF:ρ(x)=x\forall x \in F: \rho(x)=x ). By (2.9.12)(2.9.12) we finish the proof.

\square

Proposition 2.10.8: Finite subfield order

F,EFF=pmE=pnE/F    mn\begin{align*} &\sphericalangle \\ &F, E \in \mathcal F \\ &|F| = p^m \\ &|E| = p^n \\ \hline \\ &E/F \iff m \mid n \end{align*}

Proof

    \implies

We have E/F/FpE/F/\mathbb F_p so [E:Fp]=[E:F][F:Fp]    n=[E:F]m    mn[E:\mathbb F_p]=[E: F][F:\mathbb F_p] \implies n=[E:F]m \implies m \mid n

    \impliedby

mn    pn1=(pm)k1=(pm1)((pm)k1++1)    pm1pn1    take y=xpm1xpm11xpn11    xpmxxpnxm \mid n \implies p^n-1=(p^m)^k-1=(p^m-1)((p^m)^{k-1}+\ldots+1) \implies p^m-1 \mid p^n-1 \overset{\text{take }y=x^{p^m-1}}\implies x^{p^m-1}-1 \mid x^{p^n-1}-1 \implies x^{p^m}-x \mid x^{p^n}-x

So we have E=Fp(P1),F=Fp(P2),P1P2    E/FE=\mathbb F_p(\parallel P_1), F=\mathbb F_p(\parallel P_2), P_1 \supseteq P_2 \implies E/F

\square

Proposition 2.10.9: Subgroup of multiplicative group is cyclic

FFGGFGG\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &G \subseteq_G F^* \\ \hline \\ &G \in \mathcal G^{\circlearrowleft} \end{align*}

Proof

By (2.2.38)(2.2.38) we have:

GZp1α1××ZpkαkG \cong \Z_{p_{1}^{\alpha_1}} \times \ldots \times \Z_{p_{k}^{\alpha_k}}

Where pip_i are primes, not necessary different. Let's pick from each Zpiαi\Z_{p_i^{\alpha_i}} it's generator aia_i and make element a=(a1,,an)a=(a_1, \ldots, a_n) it's order will be m:=LCM(p1α1,,pkαk)m:=\text{LCM}(p_1^{\alpha_1}, \ldots, p_k^{\alpha_k}). Note that mGm \le |G| since obviously each p1α1Gp_1^{\alpha_1} \mid |G|. On the other hand each g=(g1,,gn)Gg=(g_1, \ldots, g_n) \in G we have gr1=0,rmg^r - 1 = 0, r \mid m because it's order is LCM(ord g1,,ord gn)=LCM(p1α1β1,,pnαnβn)\text{LCM}(\text{ord }g_1, \ldots, \text{ord }g_n)=\text{LCM}(p_1^{\alpha_1-\beta_1}, \ldots, p_n^{\alpha_n-\beta_n}). So every gGg \in G satisfies xm1=0x^m-1=0 that has no more than mm roots so Gm|G|\leq m.

So we have G=m|G|=m and so aG=G\lang a \rang_G=G

\square