Skip to main content

2.2 Groups

A group is a concept that combines a set with a particular operation. This set can be anything - numbers, functions, molecules, etc. The operation, which is a kind of rule, takes two elements from the set and combines them to form another element within the set.

What's interesting is that the set can be very diverse. The operation, though, has to follow some specific properties to make the set work as a group. This means we can have different groups using the same set, just by changing the operation.

Let's look at a more formal definition to get a clearer picture:

def: Group

GS:G×GGAssociativity:x,y,zG:(xy)z=x(yz)Identity:eG:xG:ex=xe=xInverse:xG:x1G:xx1=x1x=e(G,)group\begin{align*} &\sphericalangle \\ &G \in \mathcal S \\ &\cdot: G \times G \to G \\ \text{Associativity:} \,\, &\forall x, y, z \in G: (x \cdot y) \cdot z = x \cdot (y \cdot z) \\ \text{Identity:} \,\,&\exists e \in G: \forall x \in G: e \cdot x = x \cdot e = x \\ \text{Inverse:} \,\, &\forall x \in G: \exists x^{-1}\in G: x\cdot x^{-1} = x^{-1} \cdot x = e & \\ \hline \\ &(G, \cdot) - \text{group} \\ \end{align*}

In this definition, we used the notation \cdot to denote the operation within the group. When this symbol is used, it's common to describe the group as "multiplicative." This terminology is inspired by the familiar multiplication operation in arithmetic. In this case, often the notation 11 is used for ee.

Alternatively, we could use the symbol ++ to represent the operation. In such cases, the group is referred to as "additive," echoing the addition operation we all know. In this case, ee is denoted by 00 and a1a^{-1} by a-a.

It's important to note that these are just conventions. In theory, any symbol could serve the purpose – be it \circ, \odot, or \boxdot. The choice of symbol is less about mathematical necessity and more about sticking to familiar and widely accepted conventions.

note

To denote that GG with operation \cdot is a group, we'll use the notation GG()G \in \mathcal{G}_{(\cdot)} or (G,)G()(G, \cdot) \in \mathcal{G}_{(\cdot)}. Here, G()\mathcal{G}_{(\cdot)} is the class of all groups with operation \cdot.

note

Sometimes we'll omit the operation symbol when it's clear from the context what the operation is. For example, instead of writing aba\cdot b, we'll write abab

Group Examples

Example: Additive group of integers

In the group (Z,+)(\mathbb{Z}, +), which pairs the set of integers with addition, the identity element is e:=0e := 0, and the inverse of any integer xx is its negative x-x.

Example: Multiplicative group of real numbers

The set (R{0},)(\mathbb{R} \setminus \{0\}, \cdot), which consists of all real numbers except zero combined with the multiplication operation, forms a group. In this group, the identity element is e:=1e := 1, as multiplying any number by 1 leaves it unchanged. The inverse of any element xx in this group is given by x1=1/xx^{-1} = 1/x.

Example: Multiplicative group of complex numbers

G:=(C,)e:=1x=reiϕ    x1=1/reiϕ\begin{align*} &G:=(\mathbb{C}, \cdot) \\ &e:=1 \\ &x = re^{i\phi} \implies x^{-1} = 1/r\cdot e^{-i\phi} \\ \end{align*}

Example: A group of integers modulo n

The group Zn\Z_n is composed of integers ranging from 00 to n1n-1, where nn represents a specified positive integer. Within this set, we can establish two distinct operations, forming two separate groups. These operations are addition (++) and multiplication (\cdot), defined as follows: first, perform the operation in the usual manner with integers, then take the result and find its remainder upon division by nn. Since the remainder satisfies 0rn10 \le r \le n-1, both operations are well-defined.

These operations are commonly denoted as being performed modulo nn.

For instance, in the group Z5\Z_5, which contains the elements 0,1,2,3,4{0, 1, 2, 3, 4}, consider adding 2 and 4. The sum is 6. Dividing 6 by 5 yields a remainder of 1, therefore 2+41(modn)2 + 4 \equiv 1 \pmod n . Similarly, multiplying 3 and 4 gives 342(modn)3 \cdot 4 \equiv 2 \pmod n .

Example: A group of permutations of a finite set

Consider the set Xn:=1,,nX_n := {1, \ldots, n}. We then examine all possible permutations on this set. A permutation is a bijective function σ:XnXn\sigma: X_n \to X_n, where each element in XnX_n is mapped to another element in a unique way. The collection of all such permutations σ\sigma is denoted by SnS_n.

Now, when we combine SnS_n with the operation of function composition, denoted as \circ, we get the pair (Sn,)(S_n, \circ). This pairing is, in fact, a group. The operation \circ in this context refers to applying one permutation followed by another. We'll prove that (Sn,)(S_n, \circ) satisfies the properties of a group in a subsequent discussion.

Proposition 2.2.1: Group Properties

(G,)GUnique identity: !eUnique inverse: xG:!x1xG:(x1)1=xx,yG:(xy)1=y1x1x,yG:!zG:xz=yx,yG:!zG:zx=yCancellation: xa=xb    a=bCancellation: ax=bx    a=b\begin{align*} &\sphericalangle \\ &(G, \cdot) \in \mathcal{G} \\ \hline \\ \text{Unique identity: }& \exists ! e \tag{a} \\ \text{Unique inverse: }&\forall x \in G: \exists ! x^{-1} \tag{b} \\ &\forall x \in G: (x^{-1})^{-1} = x \tag{c} \\ &\forall x,y \in G: (x\cdot y)^{-1} = y^{-1}\cdot x^{-1} \tag{d} \\ &\forall x, y\in G: \exists!z \in G: x \cdot z=y \tag{e} \\ &\forall x, y\in G: \exists!z \in G: z \cdot x=y \tag{f} \\ \text{Cancellation: }&x\cdot a=x\cdot b \implies a=b \tag{g} \\ \text{Cancellation: }&a\cdot x=b\cdot x \implies a=b \tag{h} \\ \end{align*}

Proof

a. Assume e1,e2G    e1=e1e2=e2\exists e_1, e_2 \in G \implies e_1=e_1\cdot e_2 = e_2

b. Assume xG,y1,y2:xy1=y1x=e,xy2=y2x=ex \in G, \exists y_1, y_2: x \cdot y_1= y_1\cdot x =e, x \cdot y_2= y_2\cdot x =e

y1=y1e1=y1(xy2)=(y1x)y2=ey2=y2 y_1 = y_1 \cdot e_1=y_1 \cdot (x \cdot y_2) = (y_1 \cdot x) \cdot y_2 = e \cdot y_2 = y_2

c. This means that the inverse of x1x^{-1} is xx which trivially follows from xx1=xx1=ex\cdot x^{-1}=x \cdot x^{-1} = e

d. (xy)1=(xy)1e=(xy)1(xyy1x1)=y1x1(x\cdot y)^{-1}=(x\cdot y)^{-1}e=(x\cdot y)^{-1}(x\cdot y \cdot y^{-1}\cdot x^{-1})=y^{-1}\cdot x^{-1}

e. xz=y    x1xz=x1y    z=x1yx \cdot z = y \implies x^{-1} \cdot x \cdot z = x^{-1} \cdot y \implies z = x^{-1} \cdot y.

Assume z1,z2G:xz1=y,xz2=y    xz1=xz2    x1xz1=x1xz2    z1=z2\exists z_1, z_2 \in G: x \cdot z_1 =y, x \cdot z_2 =y \implies \\ x\cdot z_1 = x \cdot z_2 \implies x^{-1}\cdot x \cdot z_1 = x^{-1}\cdot x \cdot z_2 \implies z_1 = z_2

f. Similar to e.

g. Follows from e., assuming y=xa=xby=x\cdot a = x\cdot b

h. Follows from f., assuming y=ax=bxy=a\cdot x = b\cdot x

Cayley tables

Cayley tables are like a special kind of multiplication or addition table used in group theory. These tables are a simple way to show how elements in a small group combine with each other under a specific group operation, like addition or multiplication.

For example:

(Z8,):=({1,3,5,7},)(Z8,)135711357331755571377531(\Z_8^*, \cdot):=(\{1, 3, 5, 7\}, \cdot) \subseteq (\Z_8, \cdot) \\ \\ \, \\ \, \begin{array}{c|cccc} & 1 & 3 & 5 & 7 \\ \hline 1 & 1 & 3 & 5 & 7 \\ 3 & 3 & 1 & 7 & 5 \\ 5 & 5 & 7 & 1 & 3 \\ 7 & 7 & 5 & 3 & 1 \\ \end{array} (Z4,+)012300123112302230133012(\Z_4, +) \\ \\ \, \\ \, \begin{array}{c|cccc} & 0 & 1 & 2 & 3 \\ \hline 0 & 0 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 \\ 2 & 2 & 3 & 0 & 1 \\ 3 & 3 & 0 & 1 & 2 \\ \end{array}

def: Group order

GGGgroup order\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ \hline \\ &|G| - \text{group order} \end{align*}

In other words group order is the number of elements in the group.

note

The concept of "order," as number of elements, is used exclusively in group theory, primarily for historical reasons. In contrast, when referring to other mathematical structures such as sets, rings, and fields, the term "cardinality" is used to denote the count of elements within the set.

def: Abelian group

When a group has the additional property of commutativity in its operation, it is called an Abelian group. This is defined as follows:

GG()Commutativity:x,y:xy=yxGabelianGG()A\begin{align*} &\sphericalangle \\ &G\in \mathcal G_{(\cdot)} \\ \text{Commutativity:} \,\, &\forall x, y: x \cdot y = y \cdot x\\ \hline \\ &G-\text{abelian} \\ &G \in \mathcal{G}^{\mathcal A}_{(\cdot)} \end{align*}
note

Our study will primarily focus on Abelian groups. As shown in many examples, the groups of numbers are abelian. However, this is not always the case, as demonstrated by the group of permutations.

Subgroups

def: Subgroup

MG()HM,HG()HGM(H is a subgroup of M)\begin{align*} &\sphericalangle \\ &M \in \mathcal{G}_{(\cdot)} \\ &H \subseteq M, H \in \mathcal{G}_{(\cdot)} \\ \hline \\ &H \subseteq_G M \,\,\, (H \text{ is a subgroup of } M) \end{align*}
note

The notation G\subseteq_G shows that HH is not merely a subset of the group MM, but also a subgroup within it. This notation highlights the preservation of the group structure in HH.

note

Alternatively, we will use the notation (G,+)\subseteq_{(G, +)} to provide a clearer understanding of the operation within the subgroup.

Consider a subset HH of a group MM. The operation on MM can be naturally restricted to HH, resulting in the operation :H×HH\cdot: H \times H \to H, given that HH is a subset of MM. This restricted operation is called a restriction.

However, certain conditions must be met for this restriction to be valid. If any of the following scenarios occur, the subset HH fails to form a subgroup:

  1. An element of H×HH \times H maps to an element in MHM \setminus H.
  2. The identity element ee of the group MM is not in HH.
  3. The inverse of an element xHx \in H is found in MHM \setminus H.

If any of these conditions are violated, HH does not satisfy the group axioms and thus cannot be a subgroup of MM. Conversely, if none of these conditions occur, HH indeed qualifies as a subgroup. This concept is summarized in the following proposition:

Proposition 2.2.2: Subgroup criterion 1

HGG    {eH(a)h1,h2H:h1h2H(b)hH:h1H(c)H \subseteq_G G\iff \begin{cases} e \in H & (a)\\ \forall h_1, h_2 \in H: h_1 \cdot h_2 \in H & (b) \\ \forall h \in H: h^{-1} \in H & (c) \end{cases}

Proof

    \implies

Obvious

    \impliedby

(b) implies that operation \cdot is well-defined on HH. Associativity obviously holds on the \cdot restriction to HH. Identity existence follows from (a), inverse existence follows from (c). \square

Proposition 2.2.3: Subgroup criterion 2

HGG    {Hh,gH:gh1HH\subseteq_G G\iff \begin{cases} H \neq \empty \\ \forall h, g \in H: g \cdot h^{-1} \in H \end{cases}

Proof

    \implies

Obvious

    \impliedby

H    gH    gg1=eHhH:eh1=h1Hh1,h2H:h1(h21)1=h1h2HH \ne \empty \implies \exists g \in H \implies g \cdot g^{-1} =e \in H \\ \forall h \in H: e\cdot h^{-1} = h^{-1} \in H \\ \forall h_1, h_2 \in H: h_1 \cdot (h_2^{-1})^{-1}=h_1 \cdot h_2 \in H \\

\square

Subgroup examples

Example 1

Consider a set nZ:={nk,kZ}n\Z := \{n\cdot k, k \in \Z \}. It is a subgroup of integers under addition: nZ(G,+)Zn\Z \subseteq_{(G, +)}\Z

Example 2

H:={1,i,1,i},H(G,)CH:=\{1, i, -1, -i\}, H \subseteq_{(G, \cdot)} \mathbb{C}

Example 3

Q(G,+)R(G,+)C\mathbb{Q} \subseteq_{(G, +)} \R \subseteq_{(G, +)} \mathbb{C}

Example 4

Q{0}(G,)R{0}(G,)C{0}\mathbb{Q} \setminus \{0\} \subseteq_{(G, \cdot)} \mathbb{R} \setminus \{0\} \subseteq_{(G, \cdot)} \mathbb{C} \setminus \{0\}

Finitely generated groups

Finitely generated groups serve as the fundamental building blocks in group theory. They allow construction and understanding groups by generating them from a finite set of elements and the operations applied to these elements. This approach simplifies the study of potentially complex groups by reducing them to their basic generating elements and operations.

def: Finitely generated subgroup

LGSL,S<SG:SSGGLM:SMGL    SGMSGis a finitely generated subgroup by S\begin{align*} &\sphericalangle \\ &L \in \mathcal{G} \\ &S \subseteq L, |S| \lt \infty \\ &\lang S \rang_G: S \subseteq \lang S \rang_G \subseteq_G L \\ &\forall M: S \subseteq M \subseteq_G L \implies \lang S \rang_G \subseteq M \\ \hline \\ &\lang S \rang_G \,\,\,\text{is a finitely generated subgroup by } S \end{align*}
note

In other words, H=SGH = \lang S \rang_G means that HH is a minimal subgroup containing SS, or the minimum element of the partially ordered set C:={X:SXGL}C:=\{X: S \subseteq X \subseteq_G L\} with the partial order XPY:=XGYX \leq_P Y:=X \subseteq_G Y.

note

SG\lang S \rang_G can be alternatively defined as a group where each element is an expression with elements of SS over the group operation and taking inverse.

For example, an expresion over H={1,i,1,i}H=\{1, i, -1, -i\} is (i1(i))1(1)(i \cdot 1 \cdot (-i))^{-1} \cdot(-1).

note

We will also use a shorthand notation s1,...,snG:={s1,...,sn}G\lang s_1, ..., s_n\rang_G := \lang \{s_1, ..., s_n\} \rang_G

Proposition 2.2.4: Finitely generated group in explicit form

GGg1,,gnGg1,,gnG={g1α1g2α2gkαk,αiZ}\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &g_1, \ldots, g_n \in G \\ \hline \\ &\lang g_1, \ldots, g_n \rang_G=\{g_1^{\alpha_1}g_2^{\alpha_2}\ldots g_k^{\alpha_k}, \alpha_i \in \Z\} \end{align*}
note

gig_i in the explicit form might not be different

Proof

H1:=g1,,gnG,H2:={g1α1g2α2gkαk,αiZ}H_1: = \lang g_1, \ldots, g_n \rang_G, H_2:=\{g_1^{\alpha_1}g_2^{\alpha_2}\ldots g_k^{\alpha_k}, \alpha_i \in \Z\}. Note that since {g1,,gn}H2\{g_1, \ldots, g_n\} \subseteq H_2, if whe prove H2GH1H_2 \subseteq_G H_1 will mean that H1=H2H_1 = H_2 (because H1H_1 is minimal).

Obviously H2H1H_2 \subseteq H_1, the set is closed under the group operation and g10=eH2g_1^0 = e \in H_2. Finally, (g1α1g2α2gkαk)1=gkαkg2α2g1α1(g_1^{\alpha_1}g_2^{\alpha_2}\ldots g_k^{\alpha_k})^{-1}=g_k^{-\alpha_k}\ldots g_2^{-\alpha_2}g_1^{-\alpha_1}.

\square

Example: Finitely generated subgroup

iG={1,i,1,i}GC{0}\lang i \rang_G=\{1, i, -1, -i\} \subseteq_G \mathbb C \setminus \{0\}

Cyclic Groups

The complex mathematical characteristics of cyclic groups, especially their connection to difficult problems like the discrete logarithm problem, are crucial for many cryptographic algorithms. Thus, exploring these groups is a natural next step in our study.

Before we proceed, let's first establish some useful notation for exponentiation, which will help our further discussions.

def: Exponentiation

nNxn:=xx...xn timesxn:=x1x1...x1n timesx0:=1\begin{align*} &\sphericalangle \\ &n \in \mathbb{N} \\ \hline \\ &x^n := \overbrace{x \cdot x \cdot ... \cdot x}^{n \text{ times}} \\ &x^{-n} := \overbrace{x^{-1} \cdot x^{-1} \cdot ... \cdot x^{-1}}^{n \text{ times}} \\ &x^0 := 1 \end{align*}
note

This notation works for multiplicative groups. For additive groups, will use the notation nx=x+x+...+xn timesnx=\overbrace{x + x + ... + x}^{n \text{ times}}

Proposition 2.2.5: Exponentiation properties

xmxn=xm+n(xm)n=xmn(gh)n=(h1g1)n\begin{align} &x^mx^n=x^{m+n} \tag{a} \\ &(x^m)^n=x^{mn} \tag{b} \\ &(gh)^n = (h^{-1}g^{-1})^{-n} \tag{c} \end{align}

Proof

Verified directly

Proposition 2.2.6: Generated group representation

GG()aG={an,nZ}\begin{align*} &\sphericalangle \\ &G \in \mathcal{G}_{(\cdot)} \\ \hline \\ &\lang a \rang_G=\{a^n, n \in \Z\} \end{align*}

Proof

Obviously {an,nZ}aG\{a^n, n \in \Z\} \subseteq \lang a \rang_G as aG\lang a \rang_G contains all exponents. All we need to check is that {an,nZ}\{a^n, n \in \Z\} is a subgroup:

a0aG    aGg=am,h=akaG:am(ak)1=(2.2.5.b)amak=(2.2.5.a)amk{an,nZ}a^0 \in \lang a \rang_G \implies \lang a \rang_G \ne \empty \\ \forall g = a^m, h = a^k \in \lang a \rang_G: a^m(a^{k})^{-1}\overset{(2.2.5.b)}=a^ma^{-k}\overset{(2.2.5.a)}= \\ a^{m-k} \in \{a^n, n \in \Z\}

\square

def: Cyclic group

GGaG:aG=GGG(G is a cyclic group)agroup generator\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ &\exists a \in G: \lang a \rang_G=G \\ \hline \\ &G \in \mathcal{G}^{\circlearrowleft} \,\,\,(G \text{ is a cyclic group}) & \\ &a - \text{group generator} \end{align*}

def: Element order

GGaGA:={nN:an=e}ord a:={minAif Aotherwise\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ &a \in G \\ &A := \{n \in \N: a^{n}=e\} \\ \hline \\ &\text{ord }a:=\begin{cases} \min A &\text{if } A \ne \empty\\ \infty &\text{otherwise} \end{cases} \end{align*}

Proposition 2.2.7: Cyclic groups properties

GGAHGG,GG    HGord(a)=aGG=aG,ak=e    ord(a)kG=a,ord(a)<    ord(ak)=ord agcd(ord(a),k)\begin{align} &\mathcal{G}^{\circlearrowleft} \subseteq \mathcal{G}^{\mathcal A} \tag{a}\\ &H \subseteq_G G, G \in \mathcal{G}^{\circlearrowleft} \implies H \in \mathcal{G}^{\circlearrowleft} \tag{b}\\ & \text{ord}(a) = |\lang a \rang_G| \tag{c}\\ &G = \lang a \rang_G ,a^k = e \iff \text{ord}(a) \mid k \tag{d}\\ &G=\lang a \rang, \text{ord}(a) \lt \infty \implies \text{ord}(a^k)= \frac{\text{ord }a}{\text{gcd}(\text{ord}(a), k)} \hspace{0.5cm} \tag{e} \end{align}

Proof

a. GG,g,hG:gh=aman=(2.2.5.a)anam=hg\forall G \in \mathcal{G}^{\circlearrowleft}, \forall g,h\in G: gh=a^ma^n\overset{(2.2.5.a)}{=}a^na^m=hg

b.

H={e}    HGH = \{e\} \implies H \in \mathcal{G}^{\circlearrowleft} .

Assume H{e}H \ne \{e\}, bH,b=ax,x0    axH\exists b \in H, b = a^x, x \ne 0 \implies a^{-x} \in H. This mean that the set X:={z:z>0,azH}X:=\{z:z > 0, a^z\in H\} is not empty.

Define m:=minX,h:=amm:=\min X, h:= a^{m}.

gH:g=ay=amq+r=hqar,0r<mar=g(hq)1    arHarH,m=minX    (rm)(r=0)0r<m    r=0    gH:g=hq    H=hG\forall g \in H: g=a^y=a^{mq+r}=h^qa^r, 0 \le r \lt m \\ a^r = g(h^q)^{-1} \implies a^r \in H \\ a^r \in H, m = \min X \implies (r \ge m)\vee(r=0) \\ 0 \le r \lt m \implies r = 0 \implies \forall g \in H: g = h^q \implies H=\lang h \rang_G \\

c.

We'll leave the case of ord a=\text{ord }a=\infty as an exercise to the reader. Assume ord a<\text{ord }a \lt \infty.

aG=(2.2.6){an,nZ}={aord ak+r,kZ,0r<ord a}=={ar,0r<ord a}\lang a \rang_G \overset{(2.2.6)}{=}\{a^n, n \in \Z\} = \{a^{\text{ord }a \cdot k + r}, k \in \Z, 0 \le r < \text{ord }a \} = \\ = \{a^{r}, 0 \le r < \text{ord }a \}

Assume k,nN:k<nord a,ak=an\exists k, n \in \N: k < n \le \text{ord }a, a^k=a^n. That would mean that ank=e,1kn<ord aa^{n-k}=e, 1\le k-n < \text{ord }a which contradicts the definition of the order. Thus, all elements of the set {ar,0<rord a}\{a^{r}, 0 < r \leq \text{ord }a \} are distinct.

d.

    \implies

n:=ord a    {an=er:0<r<n:aren := \text{ord } a \implies \begin{cases} a^n = e \\ \forall r: 0 < r < n: a^r \ne e \end{cases} ak=e    anq+r=e,0r<n    ar=e    r=0    nk a^k = e \implies a^{nq+r}=e, 0\le r < n \implies a^r=e \implies\\ r=0 \implies n \mid k \\

    \impliedby - obvious

e.

m:=ord(ak),n:=ord(a),g:=gcd(n,k)m:=\text{ord}(a^k), n:= \text{ord}(a), g:=\text{gcd}(n, k). We want to prove m=n/gm = n/g.

akm=e    (c)nkm    n/gmk/g    gcd(n/g,k/g)=1n/gm    mn/g(ak)n/g=(an)k/g=e    ord ak=mn/g a^{km}=e \overset{(c)}{\implies} n \mid km \implies n/g \mid mk/g \overset{\gcd(n/g, k/g)=1}{\implies}\\ n/g \mid m \implies m\ge n/g \\ (a^{k})^{n/g}=(a^{n})^{k/g}=e \implies \text{ord }a^k= m \leq n/g

\square

Cyclic groups of integers

Recall that Zn=0,...,n1\Z_n = {0, ..., n-1} represents a set of integers modulo nn, where the group operation is as defined in the example above.

def: Group of units

Zn:={xZn:bZn:xb1(modn)}\Z^*_n:=\{x \in \mathbb{Z}_n:\exists b \in \mathbb{Z}_n: x\cdot b\equiv 1 \pmod n\}

Example

Consider Z5\Z_5:

111(mod5)231(mod5)321(mod5)441(mod5)1 \cdot 1\equiv 1 \pmod 5 \\ 2 \cdot 3\equiv 1 \pmod 5 \\ 3 \cdot 2\equiv 1 \pmod 5 \\ 4 \cdot 4\equiv 1 \pmod 5 \\

Thus we have Z5=4|\Z^*_5|=4

def: Euler function

ϕ(n):={kN:k<n,gcd(k,n)=1}\phi(n):=|\{k \in \N: k<n, \text{gcd}(k,n)=1\}|

Note that ϕ(5)=4=Z5\phi(5) = 4 = |\Z^*_5|. This equality is not coincidental, but rather a consequence of the following theorem:

Proposition 2.2.8: Group of units order

Zn=ϕ(n)|\Z^*_n|=\phi(n)

Proof

gcd(k,n)=1    (2.1.6)x,yZ:kx+ny=1    xZn:kx1(modn)    kZn\gcd(k, n) = 1 \overset{(2.1.6)}{\iff} \exists x, y \in \Z: k\cdot x+n\cdot y=1 \iff \\ \exists x \in \Z_n: kx \equiv 1 \pmod n \iff k \in \Z^*_n

\square

Theorem 2.2.9: Euler theorem

a,nNgcd(a,n)=1aϕ(n)1(modn)\begin{align*} &\sphericalangle \\ &a, n \in \N \\ &\gcd(a, n)=1 \\ \hline \\ &a^{\phi(n)} \equiv 1 \pmod n \end{align*}

Proof

a,nN,gcd(a,n)=1    aZna, n\in \mathbb{N}, \text{gcd}(a,n)=1 \implies a\in \Z^*_n

It's obvious that aGGZn\lang a \rang_G \subseteq_G \Z^*_n, so by (2.2.17), that we'll prove a bit later, we have aGZn|\lang a \rang_G| \mid |\Z^*_n|

aGZn    (2.2.7.c)ord a Zn    (2.2.8)ord a ϕ(n)    (2.2.7.d)    aϕ(n)=e (in Zn)    aϕ(n)1(modn)|\lang a \rang_G| \,|\, |\Z^*_n| \overset{(2.2.7.c)}{\implies} \text{ord a } |\, |\Z^*_n| \overset{(2.2.8)}\implies \text{ord a } |\, \phi(n) \overset{(2.2.7.d)}{\implies} \\ \implies a^{\phi(n)} = e \text{ (in } \Z_n \text{)} \implies a^{\phi(n)}\equiv1 \pmod n

\square

Corrolary 2.2.10: Fermat's little theorem

pP    ap11(modp)p \in \mathfrak{P} \implies a^{p-1}\equiv 1\pmod p

Proof

pP:ϕ(p)=p1\forall p \in \mathfrak{P}: \phi(p)=p-1

\square

note

Fermat's Little Theorem frequently finds application in finite multiplicative groups of prime order for determining the inverse element, as it states that ap2=a1(modp)a^{p-2} = a^{-1} \pmod p.

Permutations

def: Permutation

σn:{1,...,n}{1,...,n}σnSn(σ is a permutation)\begin{align*} &\sphericalangle \\ &\sigma_n:\{1,...,n\} \leftrightarrow \{1,...,n\} \\ \hline \\ &\sigma_n \in S_n \,\,\, (\sigma \text{ is a permutation}) \end{align*}

In other words, permutation is a bijective mapping between two finite equal sets of integers.

note

We will represent the set of all permutations of the set {1,...,n}\{1, ..., n\} as SnS_n. Interestingly, SnS_n forms a group (called symmetric group) under the operation of function composition. However, this particular aspect of SnS_n being a group is not essential for our current discussion.

def: Cycle

σSnA{1,...,n},A={a1,...,ak}σ(a1)=a2,σ(a2)=a3,...,σ(ak)=a1x{1,...,n}A:σ(x)=xσnSn(σ is a cycle)σn=(a1a2ak)\begin{align*} &\sphericalangle \\ &\sigma \in S_n \\ &\exists A \subseteq \{1, ..., n\}, A = \{a_1, ..., a_k\} \\ &\sigma(a_1) = a_2, \sigma(a_2) = a_3, ..., \sigma(a_k) = a_1\\ &\forall x\in \{1, ..., n\} \setminus {A}: \sigma(x) = x \\ \hline \\ &\sigma_n \in S_n^{\circlearrowleft} \,\,\,(\sigma \text{ is a cycle}) \\ &\sigma_n = (a_1\, a_2\, \ldots\, a_k) \end{align*}

def: Disjoint cycles

σ=(a1,...,ak)τ=(b1,...,bl){a1,...,ak}{b1,...,bl}=στ=(σ,τ are disjoint cycles)\begin{align*} &\sphericalangle \\ &\sigma = (a_1, ..., a_k) \\ &\tau = (b_1, ..., b_l) \\ &\{a_1, ..., a_k\} \cap \{b_1, ..., b_l\} = \empty \\ \hline \\ & \sigma \cap \tau = \empty \,\,\,(\sigma, \tau \text{ are disjoint cycles}) \end{align*}

Proposition 2.2.11: Disjoint cycles commutativity

στ=    στ=τσ\sigma \cap \tau = \empty \implies \sigma \circ \tau = \tau \circ \sigma

Proof

Clearly, given that cycles are disjoint, each element in the permutations στ\sigma \circ \tau or τσ\tau \circ \sigma is influenced by only one of the permutations.

\square

Proposition 2.2.12: Cyclic representation

σSn:{σ1,...,σk}:σ=σ1...σk,σiSn,ij    σiσj=\forall \sigma\in S_n: \exists \{\sigma_1, ..., \sigma_k\}: \sigma=\sigma_1\circ...\circ\sigma_k, \sigma_i \in S_n^{\circlearrowleft} , \\ i\ne j \implies \sigma_i \cap \sigma_j = \empty

Proof

Let's make a proof by construction. Here's the algorithm for finding all σi\sigma_i:

  1. i:=1,X:={1,...,n}i := 1, X:=\{1, ..., n\}
  2. a1:=minXa_1 := \min X
  3. a2:=σ(a1)a_2 := \sigma(a_1)
  4. … until
  5. a1=σ(am)a_1 = \sigma(a_m)
  6. σi:=(a1,...,am)\sigma_i:=(a_1,...,a_m)
  7. X:=X{a1,...,am}X:=X \setminus \{a_1, ...,a_m\}
  8. i:=i+1i:=i+1
  9. If X,X \ne \empty, go to step 2
  10. σ:=σ1...σi1\sigma:=\sigma_1\cdot...\cdot\sigma_{i-1}

Note that we'll eventually reach step 5 because the set XX is finite and if we have σ(ak)=aj,j<k\sigma(a_k) = a_j, j<k then j=1j=1, otherwise σ(aj1)=σ(ak),j1k\sigma(a_{j-1})=\sigma(a_{k}), j-1 \ne k contradicting to σ\sigma being a bijection.

\square

note

We typically omit such singleton cycles, focusing only on cycles that contain more than one element. For example, instead of writing σ=(14)(2)(35)\sigma = (1\, 4) \circ (2) \circ (3\, 5), where (2)(2) is a cycle with just one element, we simplify it to σ=(14)(35)\sigma = (1\, 4) \circ (3\, 5).

Example: Cycle

Assume σ=(136)\sigma=(1\, 3\, 6) on a set X:={1,...,7}X:=\{1, ..., 7\}. That means:

σ(1)=3σ(2)=2σ(3)=6σ(4)=4σ(5)=5σ(6)=1σ(7)=7\sigma(1)=3 \\ \sigma(2)=2 \\ \sigma(3)=6 \\ \sigma(4)=4 \\ \sigma(5)=5 \\ \sigma(6)=1 \\ \sigma(7)=7 \\

Example: Decomposition into disjoint cycles

Consider the permutation σ=(136)(367)\sigma = (1\, 3\, 6) \circ (3\,6\, 7) on a set X:={1,...,7}X:=\{1, ..., 7\}. It is important to note that these two cycles are not disjoint. Our objective is to convert this into its disjoint cycles form, following the algorithm outlined in (2.2.12).

To begin with, let's examine how we compute the values for this permutation. Each element is initially permuted using the cycle on the right, and then the outcome of this first permutation is further permuted by the cycle on the left. For instance:

Here, we use square brackets to indicate the application of the function, distinguishing it from the parentheses used in cycle notation.

So we have:

σ(1)=(136)[(367)[1]]=(136)[1]=3σ(3)=(136)[(367)[3]]=(136)[6]=1\sigma(1) = (1\, 3\, 6)[(3\, 6\, 7)[1]] = (1\, 3\, 6)[1] = 3 \\ \sigma(3) = (1\, 3\, 6)[(3\, 6\, 7)[3]] = (1\, 3\, 6)[6] = 1

So we get σ1=(13)\sigma_1=(1 \, 3). Next:

X:={2,4,5,6,7}σ(2)=(136)[(367)[2]]=(136)[2]=2σ2=(2)X:= \{2, 4, 5, 6, 7\} \\ \sigma(2) = (1\, 3\, 6)[(3\, 6\, 7)[2]] = (1\, 3\, 6)[2] = 2 \\ \sigma_2 = (2) \\ \\ X:={4,5,6,7}σ(4)=(136)[(367)[4]]=(136)[4]=4σ3=(4)X:= \{4, 5, 6, 7\} \\ \sigma(4) = (1\, 3\, 6)[(3\, 6\, 7)[4]] = (1\, 3\, 6)[4] = 4 \\ \sigma_3 = (4) \\ X:={5,6,7}σ(5)=(136)[(367)[5]]=(136)[5]=5σ4=(5)X:= \{5, 6, 7\} \\ \sigma(5) = (1\, 3\, 6)[(3\, 6\, 7)[5]] = (1\, 3\, 6)[5] = 5 \\ \sigma_4 = (5) \\ X:={6,7}σ(6)=(136)[(367)[6]]=(136)[7]=7σ(7)=(136)[(367)[7]]=(136)[3]=6σ5=(67)X:= \{6, 7\} \\ \sigma(6) = (1\, 3\, 6)[(3\, 6\, 7)[6]] = (1\, 3\, 6)[7] = 7 \\ \sigma(7) = (1\, 3\, 6)[(3\, 6\, 7)[7]] = (1\, 3\, 6)[3] = 6 \\ \sigma_5 = (6\, 7) \\

Finally, by excluding 1-cycles from our consideration, we arrive at the simplified representation σ=(13)(67)\sigma = (1\, 3) \circ (6\, 7)

This form is more advantageous than the original expression, because:

  1. Cycles here are commutative
  2. Only one cycle is necessary to determine the value of a single argument (either left or right)

Cosets

Cosets are very useful in understanding how groups can be broken down into simpler pieces. When we explore factor groups (discussed below), which are like simpler versions of a bigger group, cosets help us see how the original group is organized. This is really important when we're trying to find out if two groups are essentially the same in structure.

def: Coset

HGGgGLeft coset gH:={gh,hH}Right coset Hg:={hg,hH}\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &g \in G \\ \hline \\ \text{Left coset } &gH := \{gh, h \in H\} \\ \text{Right coset } &Hg := \{hg, h \in H\} \end{align*}
note

In the case of an Abelian group, where the operation is commutative, the left coset and right coset are identical. Consequently, in such contexts, we simply refer to them as a coset.

note

We have used a shorthand notation for group operations, which will be frequently utilized hereafter. In this notation, rather than expressing the operation as hgh \cdot g, we simply denote it as hghg. This principle is also applicable to cosets.

However, when the operation in the group is explicitly stated, such as in the case of an additive group, the coset notation is adapted accordingly. For example, in the context of an additive group, the coset would be denoted as g+Hg+H.

Example: nZn\Z

Consider H:=nZ,G:=Z,g:=1H:=n\Z, G:=\Z, g:=1. Then the coset g+H={1+nk,kZ}g+H=\{1+nk, k \in \Z\}

Example: Z6\Z_6

If H:={0,3},G:=Z6H:=\{0, 3\}, G:=\Z_6, then 0+H={0,3},1+H={1,4},2+H={2,5} 0+H = \{0,3\}, 1+H = \{1, 4\}, 2+H=\{2, 5\}

Example: C\mathbb{C}

H:={1,i,1,i},G:=C,H(G,)GH:=\{1, i, -1, -i\}, G:=\mathbb{C}, H\subseteq_{(G, \cdot)} G. Then we have infinite number of cosets. Some examples are 2H={2,2i,2,2i},iH=H,1H=H2H = \{2, 2i, -2, -2i\}, iH = H, -1H=H.

It is obvious that, in many instances, distinct elements of a group often result in identical cosets. Below, we present a criterion that establishes the conditions for coset equality:

Proposition 2.2.13: Coset equality criteria

HGGg1,g2GThe following are equivalent:g1H=g2HHg11=Hg21g2g1Hg11g2Hg1Hg2H\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &g_1, g_2 \in G & \\ \hline \\ &\text{The following are equivalent:} \\ &g_1H = g_2H \tag{a}\\ &Hg_1^{-1} = Hg_2^{-1} \tag{b}\\ &g_2 \in g_1H \tag{c}\\ &g_1^{-1}g_2 \in H \tag{d} \\ &g_1H \subseteq g_2H \tag{e}\\ \end{align*}

Proof

(a)     \implies (b)

g1h1=g2h2    (g1h1)1=(g2h2)1    h11g11=h21g21    h3g11=h4g21 g_1h_1=g_2h_2 \iff (g_1h_1)^{-1}=(g_2h_2)^{-1} \iff \\ h_1^{-1}g_1^{-1}=h_2^{-1}g_2^{-1} \iff h_3g_1^{-1}=h_4g_2^{-1}

(b)     \implies (c)

h1g11=h2g21    g1h11=g2h21    g2=g1h11h2h_1g_1^{-1}=h_2g_2^{-1} \implies g_1h_1^{-1}=g_2h_2^{-1} \implies g_2=g_1h_1^{-1}h_2

(c)     \implies (d)

g2=g1h1    g11g2=h1g_2 = g_1h_1 \implies g_1^{-1}g_2=h_1

(d)     \implies (e)

g11g2=h1    g1=g2h11    h2H:h3H:g1h2=g2h11h2=g2h3g_1^{-1}g_2=h_1 \implies g_1=g_2h_1^{-1} \implies \\\forall h_2 \in H: \exists h_3 \in H: g_1h_2=g_2h_1^{-1}h_2=g_2h_3

(e)     \implies (a)

g1g1H,g1Hg2H    g1g2H    g1=g2h    g2=g1h1    g2h1=g1h1h1    g2Hg1Hg_1 \in g_1H, g_1H \subseteq g_2H \implies g_1 \in g_2H \implies g_1 = g_2h \implies \\ g_2 = g_1h^{-1} \implies g_2h_1=g_1h^{-1}h_1 \implies g_2H \subseteq g_1H

\square

Proposition 2.2.14: Cosets partition

HGGg1,g2G:(g1H=g2H)(g1Hg2H=)gGgH=G\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ \hline \\ &\forall g_1, g_2 \in G: (g_1H=g_2H) \vee (g_1H\cap g_2H =\empty) \tag{a}\\ &\bigcup_{g \in G}gH = G \tag{b} \end{align*}

Proof

a.

g1Hg2H    a:a=g1h1=g2h2    g2=g1h1h21g1H    (2.2.13.c)g1H=g2Hg_1H\cap g_2H \neq\empty \implies \exists a: a=g_1h_1=g_2h_2 \implies \\ g_2 = g_1h_1h_2^{-1} \in g_1H \overset{(2.2.13.c)}\implies g_1H=g_2H

b. Obvious (assume h=eh=e)

Proposition 2.2.15: Number of left and right cosets

HGGCl:={gH,gG}Cr:={Hg,gG}:Cl=Cr\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &C_l:=\{gH, g\in G\} \\ &C_r:=\{Hg, g\in G\}: \\ \hline \\ &|C_l| = |C_r| \end{align*}

Proof

Consider a mapping ϕ:ClCr\phi: C_l \to C_r, defined by gHHg1gH \mapsto Hg^{-1}. Our goal is to demonstrate that this mapping is bijective.

Hg11=Hg21    (2.2.13)g1H=g2HHg_1^{-1}=Hg_2^{-1} \overset{(2.2.13)}\iff g_1H=g_2H

Thus ϕ\phi is well-defined and injective.

Lastly, it is surjective since for every element HgHg in CrC_r, there exists a pre-image under ϕ\phi, which is ϕ1(Hg)=g1H\phi^{-1}(Hg) = g^{-1}H.

\square

Given that the number of left and right cosets of a group are equal, we can introduce the following definition:

def: Subgroup index

HGG[G:H]:={gH,gG}={Hg,gG}\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ \hline \\ &[G:H] := |\{gH, g \in G\}|=|\{Hg, g \in G\}| \,\,\, \end{align*}

In other words, Subgroup index of HH is a number of different cosets formed by HH.

Example: Subgroup index in Z6\Z_6

Consider H={0,3},HGZ6H = \{0, 3\}, H \subseteq_G \Z_6. Then [Z6:H]=3[\Z_6:H] = 3, because we have 3 cosets that partition Z6:H,1+H,2+H\Z_6: H, 1+H, 2+H.

Example: Subgroup index in C\mathbb C

H={1,i,1,i},HGC{0}    C:H=H = \{1, i, -1, -i\}, H \subseteq_G \mathbb{C} \setminus \{0\} \implies |\mathbb{C}:H| = \infty

Lemma 2.2.16: Coset size

HGGϕg:HgH,hghϕg:HgHgH=Hg1,g2G:g1H=g2H\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &\phi_g: H \to gH, h \mapsto gh \\ \hline \\ &\phi_g: H \leftrightarrow gH \tag{a} \\ &|gH| = |H| \tag{b} \\ &\forall g_1, g_2 \in G: |g_1H| = |g_2H| \tag{c} \\ \end{align*}

Proof

a.

ϕg(h1)=ϕg(h2)    gh1=gh2    (2.2.1.g)h1=h2    ϕg:H11gH\phi_g(h_1)=\phi_g(h_2) \implies gh_1 = gh_2 \overset{(2.2.1.g)}{\implies} h_1 = h_2 \implies \phi_g: H \overset{1-1}{\to} gH agH:a=gh,ϕg1(a)=hH    ϕg(H)=gH\forall a \in gH:a =gh, \phi_g^{-1}(a)=h \in H \implies \phi_g(H)=gH

b., c.

Follows immediately from a.

Theorem 2.2.17: Lagrange

HGGG<[G:H]=G/H\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &|G| \lt \infty \\ \hline \\ &[G:H]=|G|/|H| \end{align*}

Proof

From (2.2.15), (2.2.16) we know that GG is divided into [G:H][G:H] partitions, each having H|H| elements. Hence G=[G:H]H|G| = [G:H]\cdot |H|

\square

Corrolary 2.2.18: Subgroup order

HGGG<HG (order of H divides order of G)\begin{align*} &\sphericalangle \\ &H \subseteq_G G \\ &|G| \lt \infty \\ \hline \\ &|H| \mid |G| \text{ (order of } H \text{ divides order of } G \text{)} \end{align*}

Proof

Follows from (2.2.17)

Corrolary 2.2.19: Group of prime order is cyclic

GGGPGGgG,ge:G=gG\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ &|G| \in \mathfrak{P} \\ \hline \\ &G \in \mathcal{G}^{\circlearrowleft} \\ &\forall g \in G, g \ne e: G = \lang g \rang_G \end{align*}

Proof

gG,ge    (2.2.18)gGG    GPgG=G    gG=Gg \in G, g \ne e \overset{(2.2.18)}{\implies} |\lang g \rang_G|\, | \,|G| \overset{|G| \in \mathfrak{P}}{\implies} |\lang g \rang_G|\, = \,|G| \implies \lang g \rang_G = G

\square

Factor groups and Normal subgroups

Factor groups and normal subgroups are important in the study of abstract algebra, particularly in the context of isomorphisms and extensions within groups, rings, and fields. These concepts will be heavily utilized in the upcoming sections of our discussion, so it's essential to having a firm understanding of these concepts.

def: Normal subgroup

HGMgM:gH=HgHGM(H is a normal subgroup of M)\begin{align*} &\sphericalangle \\ &H \subseteq_G M \\ &\forall g \in M: gH = Hg \\ \hline \\ &H \lhd_G M \,\,\, (H \text{ is a normal subgroup of } M) \end{align*}

Example: Normal subgroup in R2\R^2

Consider a group (R2,+)(\R^2, +) and it's subgroup H:={(x,0),xR}H:=\{(x, 0), x \in \R \}. It's normal, since obviously gG:g+H=H+g\forall g \in G: g + H = H + g.

Example: Not normal subgroup in S3S_3

Consider S3S_3 - a set of permutations of the set {1,2,3}\{1, 2, 3\}.

First let H:={e,(12)},HGGH:=\{e, (1\, 2)\}, H \subseteq_G G:

(123)H={(123),(13)}{(123),(23)}=H(123)(1\, 2\, 3)H = \{(1\, 2\, 3), (1\, 3)\} \ne \{(1\, 2\, 3), (2\, 3)\}=H(1\, 2\, 3)

Thus, HH is not a normal subgroup of G.

Now consider N:={e,(123),(132)},NGGN:=\{e, (1\, 2\, 3), (1\, 3\, 2)\}, N \subseteq_G G:

(12)N=N(12)={(12),(13),(23)}(13)N=N(13)={(12),(13),(23)}(23)N=N(23)={(12),(13),(23)}(123)N=N(123)=N(132)N=N(132)=NeN=Ne=N(1\, 2)N = N(1 \, 2) = \{(1 \, 2), (1 \, 3), (2 \, 3)\} \\ (1\, 3)N = N(1 \, 3) = \{(1 \, 2), (1 \, 3), (2 \, 3)\} \\ (2\, 3)N = N(2 \, 3) = \{(1 \, 2), (1 \, 3), (2 \, 3)\} \\ (1\, 2\, 3)N = N(1\, 2 \, 3) = N \\ (1\, 3\, 2)N = N(1\, 3 \, 2) = N \\ eN = Ne = N \\

So NGGN \lhd_GG.

Proposition 2.2.20: Abelian group has only normal subgroups

GGAHGGHGG\begin{align*} &\sphericalangle \\ &G \in \mathcal{G}^{\mathcal A} \\ &H \subseteq_G G \\ \hline \\ &H \lhd_G G \end{align*}

Proof

Obvious

Proposition 2.2.21: Normal group criteria

GGNGGThe following are equivalent:NGGgG:gNg1NgG:gNg1=N\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ &N \subseteq_G G \\ \hline \\ &\text{The following are equivalent}: \\ &\begin{align} &N \lhd_G G \tag{a} \\ &\forall g \in G: gNg^{-1} \subseteq N \hspace{1cm} \tag{b} \\ &\forall g \in G: gNg^{-1} = N \tag{c} \\ \end{align} \end{align*}

Proof

(a)    (b)(a) \implies (b)

gG:gN=Ng    n1N:n2N:gn1=n2g    gn1g1=n2    gNg1N\forall g \in G: gN = Ng \implies \forall n_1 \in N: \exists n_2 \in N: gn_1 = n_2g \implies \\ gn_1g^{-1}=n_2 \implies gNg^{-1} \subseteq N

(b)    (c)(b) \implies (c)

Fix some gGg \in G:

nN:n2N:g1ng=g1n(g1)1=g1N(g1)1Nn2N    n=gn2g1    NgNg1\forall n \in N: \exists n_2 \in N:g^{-1}ng = g^{-1}n(g^{-1})^{-1} \overset{g^{-1}N(g^{-1})^{-1} \subseteq N}{=} \\ n_2 \in N \implies n = gn_2g^{-1} \implies N \supseteq gNg^{-1}

(c)    (a)(c) \implies (a)

Fix some gGg \in G:

nN:n2N:gng1=n2    gn=n2g    gNNgn2N:nN:gng1=n2    gn=n2g    gNNg\forall n \in N: \exists n_2 \in N: gng^{-1}=n_2 \implies gn=n_2g \implies gN \subseteq Ng \\ \forall n_2 \in N: \exists n \in N: gng^{-1}=n_2 \implies gn=n_2g \implies gN \supseteq Ng

\square

def: Factor group

KGNGKK/N:=({gN,gK},:g1Ng2Ng1g2N)K/Nfactor group\begin{align*} &\sphericalangle \\ &K \in \mathcal{G} \\ &N \lhd_G K \\ &K/N:=(\{gN, g \in K\}, \cdot:g_1N \cdot g_2N \mapsto g_1g_2N) \\ \hline \\ &K/N - \text{factor group} \\ \end{align*}

Proposition 2.2.22: Factor group is a group

GGNGGG/NGG/N=[G:N]\begin{align*} &\sphericalangle \\ &G \in \mathcal{G} \\ &N \lhd_G G \\ \hline \\ &\begin{align*} &G/N \in \mathcal G \tag{a} \\ &|G/N| = [G:N] \hspace{1cm} \tag{b} \end{align*} \end{align*}

Proof

a.

First, we need to establish that the group operation \cdot on G/NG/N is well-defined. That is a,b,c,dG:aN=bN,cN=dN\forall a, b, c, d \in G: aN=bN, cN=dN, we have aNcN=bNdNaN\cdot cN = bN\cdot dN

aN=bN,cN=dN    n1,n2N:a=bn1,c=dn2    aNcN=acN=bn1dn2N=bn1dN=NGGbn1Nd=bNd=bdN==bNdNaN=bN, cN=dN \implies \exists n_1, n_2 \in N: a=bn_1, c=dn_2 \implies \\ aN\cdot cN =acN = bn_1dn_2N = bn_1dN\overset{N \lhd_G G }{=}bn_1Nd=bNd=bdN= \\ = bN \cdot dN

Associativity is obvious, identity is NN, (gN)1:=g1N(gN)^{-1} := g^{-1}N.

b. Obvious by definition of [G:N][G:N]

\square

note

It's important to note that a subgroup must be normal for the concept of a factor group to be meaningful. The significance of normal subgroups will be further developed in the section discussing isomorphisms.

Example: Z/nZ\Z/n\Z

A factor group Z/nZ={nZ,1+nZ,...,n1+nZ}\Z/n\Z = \{n\Z, 1+n\Z, ..., n-1+n\Z\}. Note that it's very similar to the group (Zn,+)(\Z_n, +). Actually, we will establish below that these groups are isomorphic.

Example: R2/(y=0)\R^2/(y=0)

Consider a group (R2,+)(\R^2, +) and it's subgroup H:={(x,0),xR}H:=\{(x, 0), x \in \R \}. R2/H={a+H,aR}\R^2/H = \{a+H, a \in \R\}. Thus, R2/HR^2/H is very similar to R\R.

Homomorphisms

Homomorphisms offer insights into the nature and relationships of groups. Homomorphisms are particularly useful in identifying and exploring underlying similarities between different groups.

def: Group homomorphism

G1G()G2G()ϕ:G1G2g,hG1:ϕ(gh)=ϕ(g)ϕ(h)ϕ:G1GG2 or G1ϕGG2(ϕ is a homomorphism from G1 to G2)\begin{align*} &\sphericalangle \\ &G_1 \in \mathcal G_{(\cdot)} \\ &G_2 \in \mathcal G_{(\circ)} \\ &\phi: G_1 \to G_2 \\ &\forall g, h \in G_1: \phi(g \cdot h) = \phi(g)\circ \phi(h) \\ \hline \\ &\phi: G_1 \rightsquigarrow_G G_2 \text{ or } G_1 \overset{\phi}{\rightsquigarrow}_G G_2\,\,\,\\ &(\phi \text{ is a homomorphism from } G_1 \text{ to } G_2) \end{align*}

Example: Homomorphism from integers to any group

ϕ:(Z,+)G,ngn\phi: (\Z, +) \to G, n \mapsto g^{n}. We can easily check that ϕ(n1+n2)=gn1+n2=gn1gn2=ϕ(n1)ϕ(n2)\phi(n_1 + n_2) = g^{n_1 + n_2} = g^{n_1} \cdot g^{n_2} = \phi(n_1) \cdot \phi(n_2). Thus, (Z,+)ϕGG(\Z, +) \overset{\phi}{\rightsquigarrow}_G G

Example: Homomorphism of real and complex numbers

ϕ:(R,+)(C,),xeix\phi: (\R, +) \to (\mathbb{C}, \cdot), x \mapsto e^{ix}. Similarly to the example above, (R,+)ϕG(C,)(\mathbb{R}, +) \overset{\phi}{\rightsquigarrow}_G (\mathbb{C}, \cdot)

Proposition 2.2.23: Homomorphisms properties

G1,G2GG1ϕGG2ϕ(e1)=e2gG1:ϕ(g1)=ϕ(g)1H1GG1    ϕ(H1)GG2H2GG2    ϕ1(H2)GG1H2GG2    ϕ1(H2)GG1\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\phi}{\rightsquigarrow}_G G_2 \\ \hline \\ &\begin{align*} & \phi(e_1)=e_2 \tag{a}\\ & \forall g \in G_1: \phi(g^{-1})=\phi(g)^{-1} \tag{b}\\ & H_1 \subseteq_G G_1 \implies \phi(H_1) \subseteq_G G_2 \tag{c}\\ & H_2 \subseteq_G G_2 \implies \phi^{-1}(H_2) \subseteq_G G_1 \tag{d}\\ & H_2 \lhd_G G_2 \implies \phi^{-1}(H_2) \lhd_G G_1 \tag{e}\\ \end{align*} \end{align*}

Proof

a.

e2ϕ(e1)=ϕ(e1)=ϕ(e1e1)=ϕ(e1)ϕ(e1)    e2=ϕ(e1)e_2\phi(e_1)=\phi(e_1)=\phi(e_1e_1)=\phi(e_1)\phi(e_1) \implies e_2=\phi(e_1)

b.

ϕ(g1)ϕ(g)=ϕ(g1g)=ϕ(e1)=e2    ϕ(g1)=ϕ(g)1\phi(g^{-1})\phi(g)=\phi(g^{-1}g)=\phi(e_1)=e_2 \implies \phi(g^{-1})=\phi(g)^{-1}

c.

(a)    ϕ(H1)x,yϕ(H1):a,bH1:ϕ(a)=x,ϕ(b)=yxy1=ϕ(a)ϕ(b)1=ϕ(ab1)ϕ(H1)    (2.2.3)(a) \implies \phi(H_1) \ne \empty \\ \forall x, y \in \phi(H_1):\exists a, b\in H_1:\phi(a)=x, \phi(b)=y \\ xy^{-1}=\phi(a)\phi(b)^{-1} = \phi(ab^{-1}) \in \phi(H_1)\overset{(2.2.3)}{\implies} \square

d.

H1:=ϕ1(H2)(a)    e1H1a,bH1    ϕ(ab1)=ϕ(a)ϕ(b)1H2    ab1H1    2.2.3H_1:=\phi^{-1}(H_2) \\ (a) \implies e_1 \in H_1 \\ a, b \in H_1 \implies \phi(ab^{-1})=\phi(a)\phi(b)^{-1}\in H_2 \implies ab^{-1} \in H_1 \overset{2.2.3}{\implies} \square

e.

H2GG2H1:=ϕ1(H2)g,hH1:ϕ(g1hg)=ϕ(g)1ϕ(h)ϕ(g)H2    g1hgH1    H_2 \lhd_G G_2 \\ H_1:=\phi^{-1}(H_2) \\ g, h \in H_1: \phi(g^{-1}hg)=\phi(g)^{-1}\phi(h)\phi(g) \in H_2 \implies g^{-1}hg \in H_1 \implies \square

\square

def: Homomorphism kernel

G1,G2GG1ϕGG2kerϕ:=ϕ1(e2)\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\phi}{\rightsquigarrow}_G G_2 \\ \hline \\ &\ker \phi:= \phi^{-1}(e_2) \end{align*}

Example: Kernel of RC\R \rightsquigarrow \mathbb C

ϕ:(R,+)(C,),xeix\phi: (\R, +) \to (\mathbb{C}, \cdot), x \mapsto e^{ix}. Then kerϕ={2πn,nZ}\ker \phi=\{2\pi n, n \in \Z\}

Proposition 2.2.24: Homomorphism kernel is a normal subgroup

G1,G2GG1ϕGG2kerϕGG1\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\phi}{\rightsquigarrow}_G G_2 \\ \hline \\ &\ker \phi \lhd_G G_1 \end{align*}

Proof

Follows trivially from (2.2.23.e)

\square

Proposition 2.2.25: Injective homomorphism

G1,G2GG1ϕGG2kerϕ={e}ϕ:G111G2ϕ:G1ϕ(G1)\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\phi}{\rightsquigarrow}_G G_2 \\ &\ker \phi = \{e\} \\ \hline \\ &\begin{align*} &\phi: G_1 \overset{1-1}{\to}G_2 \tag{a}\\ &\phi: G_1 \leftrightarrow \phi(G_1) \hspace{1cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

ϕ(a)=ϕ(b)    ϕ(a)ϕ(b)1=e    ϕ(ab1)=e    ab1=e    a=b\phi(a) =\phi(b) \implies \phi(a)\phi(b)^{-1} = e \implies \\ \phi(ab^{-1})=e \implies ab^{-1}=e \implies a = b

b.

Obvoius from (a)

\square

note

Ocasionally, we will use the notation kerϕ={e}\ker \phi = \{e\} to denote injective homomorphism.

Example: Homomorphisms from Z5\Z_5 to Z9\Z_9

Let's determine what homomorpisms we can build from Z5\Z_5 to Z9\Z_9. We know that kerϕ\ker \phi is should be a subgroup of Z5\Z_5. Z5\Z_5 has only two subgroups - {0}\{0\} and Z5\Z_5 by (2.2.18)(2.2.18). If kerϕ=0\ker \phi = 0 then by (2.2.25)(2.2.25) ϕ\phi is injective and ϕ(Z5)=Z5=5|\phi(\Z_5)|=|\Z_5|=5. But by (2.2.23.c)(2.2.23.c) - ϕ(Z5)GZ9\phi(\Z_5) \subseteq_G \Z_9 . But this is impossible by (2.2.18)(2.2.18).

Than means that Z5ϕGZ9    ϕ:x0\Z_5 \overset{\phi}{\rightsquigarrow}_G \Z_{9} \implies \phi: x \mapsto 0

def: Natural homomorphism

GGHGGϕ:GG/H,ggHϕnatural homomorphism\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &H \lhd_G G \\ &\phi: G \to G/H, g \mapsto gH \\ \hline \\ &\phi - \text{natural homomorphism} \end{align*}
note

It's easy to see that ϕ\phi is indeed a homomorphism.

ϕ(g1g2)=g1g2H=g1Hg2H=ϕ(g1)ϕ(g2)\phi(g_1g_2)=g_1g_2H=g_1Hg_2H=\phi(g_1)\phi(g_2)

Isomorphisms

Isomorphisms take homomorphisms a step further showing two groups are fundamentally the same in structure, despite possible differences in their presentation or elements.

def: Group isomorphism

G1,G2GG1ϕGG2G1ϕG2ϕ:G1GG2 or G1ϕGG2ϕisomorphism between G1 and G2(or G1 is isomorphic to G2)\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\phi}{\rightsquigarrow}_G G_2 \\ &G_1 \overset{\phi}{\leftrightarrow} G_2 \\ \hline \\ &\phi: G_1 {\cong}_G G_2 \text{ or } G_1 \overset{\phi}{\cong}_G G_2 \\ &\phi - \text{isomorphism between } G_1 \text{ and } G_2 \\ &\text{(or } G_1 \text{ is isomorphic to } G_2 \text{)} \end{align*}
note

Two isomorphic groups can be seen as the same group, but just in different forms or with different elements. This is because everything important about how the groups work — the rules and relationships between elements — is exactly the same in both. This concept is very useful because it allows us to study one group and apply what we learn to its isomorphic counterpart, saving time and effort in understanding different groups with similar structures.

Example: Integers and complex numbers

Z4ϕGiG,ϕ:nin\Z_4 \overset{\phi}{\cong}_G \lang i \rang_G, \phi: n \mapsto i^n. Obviously Z4ϕiG\Z_4 \overset{\phi}{\leftrightarrow} \lang i \rang_G. ϕ(m+n)=im+n=imin=ϕ(m)ϕ(n)\phi(m+n)=i^{m+n}=i^{m}i^{n}=\phi(m)\phi(n).

Example: Integers and cartesian product of integers

Z8={1,3,5,7}ϕG(Z2,+)×(Z2,+)\Z_8^*=\{1, 3, 5, 7\} \overset{\phi}{\cong}_G (\Z_2, +) \times (\Z_2, +).

ϕ(1)=(0,0)ϕ(3)=(0,1)ϕ(5)=(1,0)ϕ(7)=(1,1)\phi(1) = (0, 0) \\ \phi(3) = (0, 1) \\ \phi(5) = (1, 0) \\ \phi(7) = (1, 1)

It can be clearly seen from the Cayley tables that these two groups are actually the same.

Z8:135711357331755571377531(Z2,+)×(Z2,+):(0,0)(0,1)(1,0)(1,1)(0,0)(0,0)(0,1)(1,0)(1,1)(0,1)(0,1)(0,0)(1,1)(1,0)(1,0)(1,0)(1,1)(0,0)(0,1)(1,1)(1,1)(1,0)(0,1)(0,0)\Z_8^*: \begin{array}{c|cccc} & 1 & 3 & 5 & 7 \\ \hline 1 & 1 & 3 & 5 & 7 \\ 3 & 3 & 1 & 7 & 5 \\ 5 & 5 & 7 & 1 & 3 \\ 7 & 7 & 5 & 3 & 1 \\ \end{array} \\ \, \\ \\ (\Z_2, +) \times (\Z_2, +): \begin{array}{c|cccc} & (0,0) & (0,1) & (1,0) & (1,1) \\ \hline (0,0) & (0,0) & (0,1) & (1,0) & (1,1) \\ (0,1) & (0,1) & (0,0) & (1,1) & (1,0) \\ (1,0) & (1,0) & (1,1) & (0,0) & (0,1) \\ (1,1) & (1,1) & (1,0) & (0,1) & (0,0) \\ \end{array}

Proposition 2.2.26: Isomorphism properties

G1,G2GG1ϕGG2G2ϕ1GG1G1=G2G1GA    G2GAG1G    G2GH1GG1:H2GG2:H1=H2\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ & G_1 \overset{\phi}{\cong}_G G_2 \\ \hline \\ &\begin{align} &G_2 \overset{\phi^{-1}}{\cong}_G G_1\tag{a} \\ &|G_1| = |G_2| \tag{b} \\ &G_1 \in \mathcal{G}^{\mathcal A} \implies G_2 \in \mathcal{G}^{\mathcal A}\tag{c} \\ &G_1 \in \mathcal{G}^{\circlearrowleft} \implies G_2 \in \mathcal{G}^{\circlearrowleft}\tag{d} \\ &\forall H_1 \subseteq_G G_1: \exists H_2 \subseteq_G G_2: |H_1| = |H_2|\tag{e} \hspace{1cm} \\ \end{align} \end{align*}

Proof

a.

g2,h2G2:g1,h1G1:ϕ(g1)=g2,ϕ(h1)=h2ϕ(g1h1)=ϕ(g1)ϕ(h1)=g2h2    ϕ1(g2h2)=g1h1=ϕ1(g2)ϕ1(h2)\forall g_2, h_2 \in G_2: \exists g_1, h_1 \in G_1: \phi(g_1)=g_2, \phi(h_1)=h_2 \\ \phi(g_1h_1)=\phi(g_1)\phi(h_1)=g_2h_2 \implies \\ \phi^{-1}(g_2h_2)=g_1h_1 = \phi^{-1}(g_2)\phi^{-1}(h_2)

b. Obvious

c.

g2,h2G2:g1,h1G1:ϕ(g1)=g2,ϕ(h1)=h2g2h2=ϕ(g1)ϕ(h1)=ϕ(g1h1)=ϕ(h1g1)=ϕ(h1)ϕ(g1)=h2g2\forall g_2, h_2 \in G_2: \exists g_1, h_1 \in G_1: \phi(g_1)=g_2, \phi(h_1)=h_2 \\ g_2h_2=\phi(g_1)\phi(h_1)=\phi(g_1h_1)=\phi(h_1g_1)=\phi(h_1)\phi(g_1)=h_2g_2

d.

aG1:G1=aG=(2.2.6){an,nZ}bG2,n:b=ϕ(an)=ϕ(a)n    G2=ϕ(a)G\exists a \in G_1: G_1=\lang a \rang_G \overset{(2.2.6)}{=} \{a^n, n \in \Z\} \\ \forall b \in G_2, \exists n: b=\phi(a^n)=\phi(a)^n \implies G_2 = \lang \phi(a) \rang_G

e.

Follows from (2.2.23.c)(2.2.23.c) and the fact that ϕ\phi is a bijection.

\square

Theorem 2.2.27: First isomorphism theorem

G1,G2GG1ψGG2ϕ:G1G1/kerψnatural homomorphism!η:G1/kerψηGψ(G1),ψ=ηϕ\begin{align*} &\sphericalangle \\ &G_1, G_2 \in \mathcal G \\ &G_1 \overset{\psi}{\rightsquigarrow}_G G_2 \\ &\phi:G_1 \to G_1/\ker \psi - \text{natural homomorphism} \\ \hline \\ &\exists! \eta: G_1/\ker \psi \overset{\eta}{\cong}_G \psi(G_1), \psi = \eta \phi \end{align*}

First isomorphism theorem First isomorphism theorem

Proof

Define unique η\eta

Remeber that by (2.2.24)(2.2.24) kerψGG1\ker \psi \lhd_G G_1, so the factor group G1/kerψG_1 / \ker \psi is well-defined.

Now we define η:gkerψψ(g)\eta: g\ker\psi \mapsto \psi(g). Let's prove that it's well-defined. g1kerψ=g2kerψ    hkerψ:g1=g2h    ψ(g1)=ψ(g2h)=ψ(g2)ψ(h)=ψ(g2)g_1\ker\psi = g_2\ker\psi \implies \exists h \in \ker\psi: g_1 = g_2h \implies \psi(g_1) = \psi(g_2 h)=\psi(g_2)\psi(h) = \psi(g_2).

Next, η\eta is uniquely defined (as a map) because ψ=ϕη\psi = \phi\eta. This means that we know exactly ψ(g)\psi(g) and use this value to define how η\eta maps the coset from G1/kerψG_1 / \ker \psi to ψ(G1)\psi(G_1).

η\eta is bijective

Obviously, η(G1/kerψ)=ψ(G1)\eta(G_1/\ker \psi) = \psi(G_1).

η(gkerψ)=e    ψ(g)=e    gkerψ    η1(e)=kerψ\eta(g\ker\psi)=e \iff \psi(g)=e \iff g \in \ker \psi \implies \\ \eta^{-1}(e)=\ker \psi

Since kerψ\ker \psi is identity in G1/kerψG_1 / \ker \psi, by (2.2.25)(2.2.25) η\eta is injective.

Thus, we proved that η:G1/kerψψ(G1)\eta: G_1/\ker \psi \leftrightarrow \psi(G_1).

η\eta is a homomorphism

η(g1kerψg2kerψ)=η(g1g2kerψ)=ψ(g1g2)==ψ(g1)ψ(g2)=η(g1kerψ)η(g2kerψ)\eta(g_1\ker\psi \cdot g_2\ker\psi)=\eta(g_1 g_2\ker\psi)=\psi(g_1g_2)=\\ =\psi(g_1)\psi(g_2) = \eta(g_1\ker \psi)\eta(g_2\ker \psi)

\square

Theorem 2.2.28: Second isomorphism theorem

GGHGGNGGHNGGHNGHHN/NGH/(HN)\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &H \subseteq_G G \\ &N \lhd_G G \\ \hline \\ &\begin{align*} & HN \subseteq_G G \tag{a}\\ & H \cap N \lhd_G H \tag{b}\\ & HN/N \cong_G H / (H \cap N) \hspace{1cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

HN:={hn,hH,nN}HN:=\{hn, h \in H, n \in N \}, fix some h1,h2H,n1,n2Nh_1, h_2 \in H, n_1, n_2 \in N,

eHN,NGG    (h2)1n1h2N    (h1n1)(h2n2)=h1h2H(h21n1h2)n2NHN,(h1n1)1=n11h11=h11(h1n11h11)HNe \in HN, \\ N \lhd_G G \implies (h_2)^{-1}n_1h_2 \in N \implies \\ (h_1n_1)(h_2n_2)=\underbrace{h_1h_2}_{\in H}\underbrace{(h_2^{-1}n_1h_2)n_2}_{\in N} \in HN, \\ (h_1n_1)^{-1}=n_1^{-1}h_1^{-1}=h_1^{-1}(h_1n_1^{-1}h_1^{-1})\in HN

By (2.2.2)(2.2.2) HNGGHN \subseteq_G G.

b.

hH,lNH    h1lhH,h1lhN    NHGHh \in H, l \in N \cap H \implies h^{-1}lh \in H, h^{-1}lh \in N \implies N \cap H \lhd_G H

c.

ϕ:HHN/N,hhNhH,nN:ϕ1(hnN)=ϕ1(hN)=hH    ϕ(H)=HN/N\phi: H \to HN/N, h \to hN \\ \forall h \in H, n \in N: \phi^{-1}(hnN)=\phi^{-1}(hN)=h \in H \implies \phi(H) = HN/N \\ h1,h2H:ϕ(h1h2)=h1h2N=h1Nh2N=ϕ(h1)ϕ(h2)    HϕGHN/N\forall h_1, h_2 \in H: \phi(h_1h_2)=h_1h_2N=h_1Nh_2N =\phi(h_1)\phi(h_2) \implies \\ H \overset{\phi}{\rightsquigarrow}_G HN/N

Next, kerϕ={hH:hN=N}=HN\ker \phi = \{h\in H: hN=N\}=H\cap N. Combining all these facts:

HϕHN/N,kerϕ=HN,ϕ(H)=HN/N    (2.2.27)H/(HN)ϕGHN/NH \overset{\phi}{\rightsquigarrow} HN/N, \ker \phi = H\cap N, \phi(H)=HN/N \overset{(2.2.27)}{\implies} \\ H/(H\cap N) \overset{\phi}{\cong}_G HN/N

\square

Theorem 2.2.29: Correspondence theorem (fourth isomorphism theorem)

GGNGGH:={H:NGHGG}HN:={HN:HNGG/N}ϕ:HHN,HH/Nϕwell-definedϕ1(HN)={gG:gNHN}ϕ:HHNNGHGG    ϕ(H)GG/NHNGG/N    ϕ1(HN)GG\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &N \lhd_G G \\ &\mathfrak H :=\{H: N\subseteq_G H \subseteq_G G\} \\ &\mathfrak H_N :=\{H_N: H_N \subseteq_G G/N\} \\ &\phi: \mathfrak H \to \mathfrak H_N, H \mapsto H/N \\ \hline \\ &\begin{align*} & \phi - \text{well-defined} \tag{a} \\ & \phi^{-1}(H_N) =\{g \in G: gN \in H_N\} \tag{b}\\ & \phi: \mathfrak H \leftrightarrow \mathfrak H_N \tag{c}\\ &N \subseteq_G H \lhd_G G \implies \phi(H) \lhd_G G / N \hspace{1cm} \tag{d}\\ & H_N \lhd_G G/N \implies \phi^{-1}(H_N) \lhd_G G \hspace{1cm} \tag{e}\\ \end{align*} \end{align*}

Fourth isomorphism theorem Fourth isomorphism theorem

Proof

a.

To prove that that ϕ\phi is well-defined, we need establish that

  1. H/NH/N is a well-defined factor-group
  2. H/NHNH/N \in \mathfrak H_N

Assume HHH \in \mathfrak H. Obviously NGHN \lhd_G H, so the factor group H/NH/N is well-defined. Since H/NH/N are just cosets hNhN, it's easy to see that H/NG/NH/N \subseteq G/N. Let's prove H/NGG/NH/N \subseteq_G G/N

{H/NaN,bNH/N:aN(bN)1=ab1NH/N    H/NGG/N    H/NHN\begin{cases} H/N \ne \empty \\ \forall aN, bN \in H/N: aN(bN)^{-1}=ab^{-1}N \in H/N \end{cases} \implies \\ H/N \subseteq_G G/N \implies H/N \in \mathfrak H_N

b., c.

Consider HNGG/NH_N \subseteq_G G/N. Let's define a set

ϕ1(HN):={gG:gNHN}\phi^{-1}(H_N):=\{g \in G: gN \in H_N\}

Note that this definition is not yet telling us that ϕ1(HN)\phi^{-1}(H_N) is the inverse of the subgroup HNH_N under our mapping ϕ:HH/N\phi: H \mapsto H/N. Rather this is something we need to establish further. We will do it in three steps:

  1. Prove that ϕ1(HN)H\phi^{-1}(H_N) \in \mathfrak H
  2. Prove that ϕ(ϕ1(HN))=HN\phi(\phi^{-1}(H_N))=H_N
  3. Prove that ϕ\phi is injective

After proving each of these statements we see that ϕ1(HN)\phi^{-1}(H_N) is actually is in pre-image of HNH_N under ϕ\phi and this pre-image has exactly this one element. Since HNH_N is arbitrary this also means that ϕ\phi is surjective thus we'll finish proving (b)(b) and (c)(c).

1. Prove that ϕ1(HN)H\phi^{-1}(H_N) \in \mathfrak H

We need to prove that NGϕ1(HN)GGN \subseteq_G \phi^{-1}(H_N) \subseteq_G G:

  1. NHN    eϕ1(HN)N \in H_N \implies e \in \phi^{-1}(H_N)
  2. a,bϕ1(HN)    aN,bNHN    abNHN    abϕ1(HN)a, b \in \phi^{-1}(H_N) \implies aN, bN \in H_N \implies abN \in H_N \implies ab \in \phi^{-1}(H_N)
  3. aϕ1(HN)    aNHN    a1NHN    a1ϕ1(HN)a \in \phi^{-1}(H_N) \implies aN \in H_N \implies a^{-1}N \in H_N \implies a^{-1} \in \phi^{-1}(H_N)

So we have ϕ1(HN)GG\phi^{-1}(H_N) \subseteq_G G. Next,

nN    nNHN    nϕ1(HN)n \in N \implies nN \in H_N \implies n \in \phi^{-1}(H_N)

So NGϕ1(HN)N \subseteq_G \phi^{-1}(H_N).

2. Prove that ϕ(ϕ1(HN))=HN\phi(\phi^{-1}(H_N))=H_N

aNHN    aϕ1(HN)    aNϕ1(HN)/N=ϕ(ϕ1(HN))aN \in H_N \iff a \in \phi^{-1}(H_N) \iff \\ aN \in \phi^{-1}(H_N)/N = \phi(\phi^{-1}(H_N))

3. Prove that ϕ\phi is injective

ϕ(H1)=ϕ(H2)    H1/N=H2/Nh1H1    h1NH1/N    h1NH2/N    h1H2H1=H2 \phi(H_1)=\phi(H_2) \implies H_1/N = H_2/N \\ h_1 \in H_1 \iff h_1N \in H_1/N \iff \\ h_1N \in H_2/N \iff h_1 \in H_2 \\ H_1 = H_2

d.

Assume NGHGGN \subseteq_G H \lhd_G G. Consider a map ψ:G/NG/H,gNgH\psi: G/N \to G/H, gN \mapsto gH. This map is a homomorphism:

ψ(aNbN)=ψ(abN)=abH=aHbH=ψ(aN)ψ(bN)\psi(aNbN)=\psi(abN)=abH=aHbH=\psi(aN)\psi(bN)

Next, kerψ={gN,gH}=H/N    (2.2.24)H/NGG/N    ϕ(H)GG/N\ker \psi=\{gN, g\in H\} = H/N \overset{(2.2.24)}{\implies} H/N \lhd_G G/N \implies \phi(H) \lhd_G G/N

e.

Assume ϕ(H)=H/NGG/N\phi(H)=H/N\lhd_G G/N. Then we can define homomorphism ψ\psi as a composition of two natural homomorphisms: GG/NG/NH/NG \to G/N \to \frac{G/N}{H/N}. Now let's think - what is a neutal element in G/NH/N\frac{G/N}{H/N}? It is a set of cosets {aNG/N:aNH/N}\{aN \in G/N: aN \in H/N\}. Thus kerψ=H    (2.2.24)HGG\ker \psi = H \overset{(2.2.24)}{\implies} H \lhd_G G.

\square

Theorem 2.2.30: Third isomorphism theorem

GGHGGNGGNHG/HGG/NH/N\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &H \lhd_G G \\ &N \lhd_G G \\ &N \subseteq H \\ \hline \\ &G/H \cong_G \frac{G/N}{H/N} \end{align*}

Proof

Consider mapping ψ\psi in the proof of (2.2.29.e). Obviously, this homomorphism is surjective. From (2.2.29.e)(2.2.29.e) kerψ=H\ker \psi = H, thus from (2.2.27)(2.2.27) G/HGG/NH/NG/H \cong_G \frac{G/N}{H/N}.

\square

Abelian groups structure

Proposition 2.2.31: Cyclic groups are isomorphic to integers

GGG=    GGZG=n    GGZn\begin{align*} &\sphericalangle \\ &G \in \mathcal G^\circlearrowleft \\ \hline \\ &\begin{align*} &|G| = \infty \implies G \cong_G \Z \hspace{1cm} \tag{a}\\ &|G| = n \implies G \cong_G \Z_n \tag{b}\\ \end{align*} \end{align*}

Proof

Let aa be the group generator, that is G=aGG = \lang a \rang_G.

a.

Define ϕ:ZG,nan\phi: \Z \to G, n \mapsto a^n.

Let's prove that

G=,ax=e    x=0|G|=\infty, a^x=e \implies x = 0

Assume otherwise:

x0:ax=e    yZ:ay=aqx+r=ar,0r<x    G<\exists x \ne 0: a^x=e \implies \forall y \in \Z: a^y = a^{qx+r}=a^r, 0 \le r < x \implies \\ |G| < \infty

Next,

ϕ(m)=ϕ(n)    am=an    amn=e    G=m=n    f:Z11G(2.2.6)    f(Z)=G\phi(m) = \phi(n) \implies a^m = a^n \implies a^{m-n} =e \overset{|G|=\infty}{\implies} \\ m=n \implies f: \Z \overset{1-1}{\to} G\\ (2.2.6) \implies f(\Z)= G

So we proved that ϕ:ZG\phi: \Z \leftrightarrow G. Finally, let's prove that ϕ:ZG\phi: \Z \rightsquigarrow G:

ϕ(m+n)=am+n=aman=ϕ(m)ϕ(n)\phi(m+n)=a^{m+n}=a^ma^n = \phi(m)\phi(n)

b.

G=n|G|=n. Define ϕ:ZnG,xax\phi: \Z_n \to G, x \mapsto a^x. ϕ\phi is well-defined because an=ea^n=e.

ϕ(m)=ϕ(k)    am=ak    akm=ekm=qn+r,0r<n    ar=e    G=n,GG,(2.2.6)r=0    km=qn    km (mod n)    f:Zn11G(2.2.6)    bG:nZ:b=an    f(Zn)=G\phi(m) = \phi(k) \implies a^m = a^k \implies a^{k-m} =e\\ k-m = qn+r, 0 \le r < n \implies a^r=e \overset{|G|=n, G \in \mathcal G^\circlearrowleft, (2.2.6)}{\implies} \\ r=0 \implies k-m = qn \implies k \equiv m \text{ (mod } n \text{)} \implies \\ f: \Z_n \overset{1-1}{\to} G \\ (2.2.6) \implies \forall b \in G: \exists n \in \Z:b = a^n \implies f(\Z_n)= G

We proved that ϕ:ZnG\phi: \Z_n \leftrightarrow G. Let's prove that ϕ:ZnG\phi: \Z_n \rightsquigarrow G:

ϕ(m+nk)=am+k+qn==amak=ϕ(m)ϕ(n)    \phi(m+_nk)=a^{m+k+qn}=\\ =a^ma^k=\phi(m)\phi(n) \implies

\square

Corrolary 2.2.32: Any group of a prime order is isomorphic to integers

GGG=pPGGZp\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &|G|=p \in \mathfrak P \\ \hline \\ &G \cong_G \Z_p \end{align*}

Proof

From (2.2.19)(2.2.19) we know that GGG \in G^{\circlearrowleft}. Using (2.2.31)(2.2.31) we finish the proof.

\square

Proposition 2.2.33: Internal direct product is isomorphic to external direct product

GGH1,,HnGGHiHj={e}hiHi,hjHj:hihj=hjhiH1H2HnGH1×H2××Hn\begin{align*} &\sphericalangle \\ &G \in \mathcal G \\ &H_1, \ldots, H_n \subseteq_G G \\ &H_i \cap H_j = \{e\} \\ &\forall h_i \in H_i, h_j \in H_j: h_ih_j=h_jh_i \\ \hline \\ &H_1H_2\ldots H_n \cong_G H_1 \times H_2 \times \ldots \times H_n \end{align*}

Proof

We will make the proof for n=2n=2. For other nn, the proof is exactly the same.

Define ϕ:H1H2H1×H2,h1k1(h1,k1)\phi: H_1H_2 \to H_1 \times H_2, h_1k_1 \mapsto (h_1, k_1). Let's prove that it's well-defined:

h1,h2H1,k1,k2H2:h1k1=h2k2    H1H2={e}h21h1=k2k11=e    h1=h2,k1=k2\forall h_1, h_2 \in H_1, k_1, k_2 \in H_2: h_1k_1=h_2k_2 \overset{H_1 \cap H_2 = \{e\} }\implies \\ h_2^{-1}h_1=k_2k_1^{-1} = e \implies h_1=h_2, k_1=k_2

Now let's prove ϕ:H1H2H1×H2\phi: H_1H_2 \rightsquigarrow H_1 \times H_2:

g1,g2G,h1,h2H1,k1,k2H2:g1=h1k1,g2=h2k2:ϕ(g1g2)=ϕ(h1k1h2k2)=ϕ(h1h2k1k2)=(h1h2,k1k2)==(h1,k1)(h2,k2)=ϕ(g1)ϕ(g2)\forall g_1, g_2 \in G, h_1, h_2 \in H_1, k_1, k_2 \in H_2: \\ g_1=h_1k_1, g_2=h_2k_2: \\ \phi(g_1g_2)=\phi(h_1k_1h_2k_2)=\phi(h_1h_2k_1k_2)=(h_1h_2, k_1k_2) = \\ = (h_1,k_1)(h_2,k_2)=\phi(g_1)\phi(g_2)

Finally, let's prove that ϕ\phi is bijective:

(h1,k1)=(h2,k2)    h1k1=h2k2ϕ1((h1,k1))=h1k1(h_1, k_1)=(h_2, k_2) \implies h_1k_1=h_2k_2 \\ \phi^{-1}((h_1, k_1))=h_1k_1

\square

Lemma 2.2.34: Existence of an element of a prime order

GGApPpGgG:ord g=p\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &p \in \mathfrak P \\ &p \mid |G| \\ \hline \\ &\exists g \in G: \text{ord }g = p \end{align*}

Proof

n:=Gn:=|G|, we use induction on nn.

n=1n=1 is trivial.

Assume that the proposition is true k<n\forall k < n. We want to consider two cases:

  1. Only trivial subgroups of GG exist
  2. Non-trivial subgroup of GG exists

1. Only trivial subgroups of GG exist

Assume HGG,H{e}\nexists H \subset_G G, H \ne \{e\}, then aG,ae:aG=G\forall a \in G, a \ne e: \lang a \rang_G = G. We want to prove that nPn \in \mathfrak P in this case. Assume otherwise:

nP    n=pq,1<p<n,pP    (2.2.7.e)ord ap=ngcd(n,p)=np    1<apG<nn \notin \mathfrak P \implies n = pq, 1< p < n, p \in \mathfrak P \overset{(2.2.7.e)}\implies \\ \text{ord }a^p=\frac{n}{\gcd(n, p)}=\frac{n}{p} \implies 1 < |\lang a^p \rang_G| < n

Which is a contraction to HG,H{e}\nexists H \subset G, H \ne \{e\}.

So nPn \in \mathfrak P and pn    n=pp \mid n \implies n=p. So ord a=p\text{ord }a=p.

2. Non-trivial subgroup of GG exists

Now assume HGG,H{e}\exists H \subset_G G, H \ne \{e\}.

If pHp \mid |H| then by induction hypothesis we're done.

So we only need to consider the case pHp \nmid |H|.

GGA    HGG    (2.2.17),(2.2.22.b)G=HG/H    pG,pHpG/H    induction hypothesisaHG/H:ord (aH)=p    H=(aH)p=apH    apH,aHG \in \mathcal G^{\mathcal A} \implies H \lhd_GG \overset{(2.2.17), (2.2.22.b)}\implies |G|=|H|\cdot|G/H| \overset{p \mid |G|, p \nmid |H| }\implies p \mid |G/H| \overset{\text{induction hypothesis}} \implies \\ \exists aH \in G/H: \text{ord }(aH)=p \implies H=(aH)^p=a^pH \implies a^p \in H, a \notin H \\

Note that aHa \notin H, otherwise aH=HaH=H and ord aH=1\text{ord }aH=1. Denote r:=Hr := |H|, then

(2.2.18)    ord apr    (2.2.7)1=(ap)r=(ar)p    (2.2.7)ord arp    (ord ar=1)(ord ar=p)(2.2.18) \implies \text{ord }a^p \mid r \overset{(2.2.7)} \implies 1=(a^p)^r= (a^r)^p \overset{(2.2.7)}\implies \text{ord }a^r \mid p \implies \\ (\text{ord }a^r = 1) \vee (\text{ord }a^r = p)

Thus all we need to prove is area^r \ne e.

pH    pr    gcd(r,p)=1    s,q:rs+pq=1    a=ars+pq=(ar)s(ap)qp \nmid |H| \implies p \nmid r \implies \gcd(r, p)=1 \implies \exists s, q: rs+pq=1 \implies \\ a = a^{rs+pq}=(a^r)^s(a^p)^q

If we assume that ar=ea^r=e then a=(ap)q    apHaHa = (a^p)^q \overset{a^p \in H}\implies a \in H which is a contradiction.

\square

def: p-group

GGApPgG:kN{0}:ord g=pkG is a p-group\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &p \in \mathfrak P \\ & \forall g \in G: \exists k \in \N \cup \{0\}: \text{ord }g = p^k \\ \hline \\ &G \text{ is a }p\text{-group} \end{align*}

Example: Cyclic group is a pp-group

Any cyclic group of a prime order is a pp-group

Example: Non-cyclic group

Z2×Z2\Z_2 \times \Z_2 is not a cyclic group. However it's a pp-group with p=2p=2

Proposition 2.2.35: p-group criterion

GGAG<pPG is a p-group    n:G=pn\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &|G| < \infty \\ &p \in \mathfrak P \\ \hline \\ &G \text{ is a }p\text{-group}\iff \exists n: |G| = p^n \end{align*}

Proof

    \implies

Gpn    qP:gcd(p,q)=1,qG    (2.2.34)aG:n:ord a=qpn|G| \ne p^n \implies \exists q \in \mathfrak P: \gcd(p, q) = 1, q \mid |G| \overset{(2.2.34)}\implies \exists a \in G: \forall n: \text{ord }a = q \ne p^n

    \impliedby

G=pn    aG:ord apn    pPord a=pk|G| = p^n \implies \forall a \in G: \text{ord }a \mid p^n \overset{p \in \mathfrak P}\implies \text{ord }a = p^k

\square

Proposition 2.2.36: p-group structure

GGAG=pn,pP,n1gG:hG:ord hord gG=gGHGgG×H,HGG,gGH={e}\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &|G| = p^n, p \in \mathfrak P, n \ge 1 \\ &g \in G: \forall h \in G: \text{ord } h \leq \text{ord } g\\ \hline \\ &G = \lang g \rang_G H \cong_G \lang g \rang_G \times H, H \subset_G G, \lang g \rang_G \cap H = \{e\} \end{align*}

Proof

We'll make induction on nn.

n=1    G=p    (2.2.19)gG=G,H={e}n=1 \implies |G|=p \overset{(2.2.19)}\implies \lang g \rang_G=G, H = \{e\}.

Assume the proposition is true for k<nk<n. If G=gGG = \lang g \rang_G then we're done.

So we only consider the case GgGG \ne \lang g \rang_G. Denote mm to be the power of pp that equals to the maximal order in the group:

m:ord g=pmm:\text{ord }g = p^m

Since it's the maximal order we have:

aG:apm=e\forall a \in G: a^{p^m}=e \\

Now consider an element hGgGh \in G \setminus \lang g\rang_G such that it has minimal order in GgGG \setminus \lang g\rang_G:

hGgG:xGgG:ord hord xh \in G \setminus \lang g \rang_G: \forall x \in G \setminus \lang g \rang_G: \text{ord }h \leq \text{ord }x \\

Let's make a cyclic subgroup from this element:

H:=hGH:=\lang h \rang_G \\

Now we want to make an outline for the rest of the proof:

  1. Prove that ord h=p\text{ord }h=p
  2. Prove that for gHG/H:ord gH=pmgH \in G/H: \text{ord } gH = p^m
  3. Consider factor group G/HG/H that will fall under the induction hypothesis and build our decomposition from it

1. Prove that ord h=p\text{ord }h=p

The idea of the proof is building an element aGgGa \in G \setminus \lang g \rang_G such that ord a=p\text{ord }a = p. From the minimality of hh order we'll necessary have ord h=p\text{ord }h = p, since every element in GG has order plp^l for some l0l \ge 0 and eGgGe \notin G \setminus \lang g \rang_G.

We'll construct the element aa by first finding some rN:hp=grr \in \N: h^p=g^r, then proving prp \mid r and finally defining a:=gr/pha := g^{-r/p}h.

Now let's make the actual proof:

ord h=pk    gcd(ord h,p)=pord hp=(2.2.7)ord hp<ord h\text{ord }h=p^k \implies \gcd (\text{ord h}, p) = p \\ \text{ord } h^p \overset{(2.2.7)}= \frac{\text{ord }h}{p} < \text{ord } h

Since hh has minimal order in GgGG \setminus \lang g \rang_G, we conclude that hpgGh^p \in \lang g \rang_G.

hpgG    rZ:hp=gr(gr)pm1=hpm=e    (gpm1)r=e    (2.2.7.d)ord gpm1r    l0:plrh^p \in \lang g \rang_G \implies \exists r \in \Z: h^p = g^r \\ (g^r)^{p^{m-1}}=h^{p^m}=e \implies (g^{p^{m-1}})^r=e \overset{(2.2.7.d)}\implies \text{ord }g^{p^{m-1}} \mid r \implies \\ \exists l \ge 0: p^l \mid r

Since ord g=pm\text{ord }g = p^m, we know that gpm1eg^{p^{m-1}}\ne e, so l1l \ge 1. Thus plr    pr    r=psp^l \mid r \implies p \mid r \implies r = ps for some ss.

Now we define:

a:=gsha:=g^{-s}h

If aa were in gG\lang g \rang_G then hh would be in gG\lang g \rang_G which is a contradiction. So aGgG    ae    ord apa \in G \setminus \lang g \rang_G \implies a \ne e \implies \text{ord } a \ge p. But on the other hand ord ap\text{ord } a \le p because:

ap=gsphp=grhp=hphp=e    ord ap    ord apa^p=g^{-sp}h^p=g^{-r}h^p=h^{-p}h^p=e \implies \text{ord }a \mid p \implies \text{ord a} \le p

So we proved ord a=p\text{ord }a = p and thus (as mentioned in the proof outline) ord h=p\text{ord }h = p and H=p|H|=p.

2. Prove that for gHG/H:ord gH=pmgH \in G/H: \text{ord } gH = p^m

H=p,pP|H|=p, p \in \mathfrak P means that HH has only trivial subgroups {e}\{e\} and HH. So yH,ye:yG=H\forall y \in H, y \ne e: \lang y \rang_G=H. If there was an element ygGH,yey \in \lang g \rang_G \cap H, y \ne e that would mean that H=yGgGH=\lang y \rang_G \subseteq \lang g \rang_G and so hgGh \in \lang g \rang_G which contradicts the definition of hh. This means that:

gGH={e}\lang g \rang_G \cap H = \{e\}

We know that (gH)pm=gpmH=H    ord gHpm    ord gH=pl,lm(gH)^{p^m}=g^{p^m}H=H \implies \text{ord }gH \mid p^m \implies \text{ord }gH = p^l, l \leq m.

H=(gH)pl=gplH    gplgGH={e}    gpl=eH = (gH)^{p^l}=g^{p^l}H \implies g^{p^l} \in \lang g \rang_G \cap H = \{e\} \implies g^{p^l} = e

But l<ml<m contradicts the fact that ord g=pm\text{ord }g = p^m, so l=ml=m and ord gH=pm\text{ord }gH = p^m.

3. Consider factor group G/HG/H that will fall under induction hypothesis and build our decomposition from it

First it's clear that gHgH has maximal order in G/HG / H, since aG:(aH)pi=apiH\forall a \in G: (aH)^{p^i}=a^{p^i}H. In addition, the group G/HG / H has order G/H=G/H=pn1|G/H|=|G|/|H|=p^{n-1}. So by the induction hypothesis:

G/H=gHGMGgHG×MG/H = \lang gH \rang_G M \cong_G \lang gH \rang_G \times M

By (2.2.29)(2.2.29) KGG:M=K/H\exists K \subseteq_G G: M = K/H so we have:

G/H=gHG(K/H)GgHG×K/HG/H = \lang gH \rang_G (K/H) \cong_G \lang gH \rang_G \times K/H

Fix bgGKb \in \lang g \rang_G \cap K then bgG    bHgHGb \in \lang g \rang_G \implies bH \in \lang gH \rang_G and bK    bHK/Hb \in K \implies bH \in K/H. So bHgHGK/HbH \in \lang gH \rang_G \cap K/H

bHgHGK/H=induction hypothesis{H}    bH=H    bHbgGH={e}    b=ebH \in \lang gH \rang_G \cap K/H \overset{\text{induction hypothesis}}{=} \{ H \} \implies bH=H \implies b \in H\\ b \in \lang g \rang_G \cap H = \{e\} \implies b = e \\

Since bb was arbitrary in gGK\lang g \rang_G \cap K we just proved

gGK={e}\lang g \rang_G \cap K = \{e\}

Moreover:

G/H=gHG(K/H)GgHG×K/H    xG:h1,h2,h3H,kK,l0:xh1=glh2kh3    x=glkh4    HKx=glk1,k1K    G=gGKG/H = \lang gH \rang_G (K/H) \cong_G \lang gH \rang_G \times K/H \implies \\ \forall x \in G: \exists h_1, h_2, h_3 \in H, k \in K, l \ge 0: xh_1=g^lh_2kh_3 \implies \\ x = g^lkh_4 \overset{H \subseteq K}{\implies} x = g^lk_1, k_1 \in K \implies \\ G = \lang g \rang_G K

Finally

G=gGK,gGK={e}    (2.2.33)GGgG×KG = \lang g \rang_G K, \lang g \rang_G \cap K = \{e\}\overset{(2.2.33)}\implies G \cong_G \lang g \rang_G \times K

\square

note

It's clear that the group HH is also a pp-group so we can continue decomposition. Thus any pp-group is isomorphic to the external product of cyclic groups:

G=g1G××gkGG = \lang g_1 \rang_G \times \ldots \times \lang g_k \rang_G

Lemma 2.2.37: Internal direct product representation

GGAG=p1α1pkαk,piPGi:={gG:nN:ord g=pin}GiGGGipi-groupGiGj={e}G=G1G2Gk\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &|G|=p_1^{\alpha_1}\cdot \ldots \cdot p_k^{\alpha_k}, p_i \in \mathfrak P \\ &G_i:=\{g \in G: \exists n \in \N: \text{ord }g=p_i^n\} \\ \hline \\ &\begin{align*} &G_i \subseteq_G G \tag{a}\\ &|G_i| - p_i\text{-group} \tag{b}\\ &G_i \cap G_j = \{e\} \tag{c}\\ &G=G_1G_2\ldots G_k \hspace{1cm} \tag{d}\\ \end{align*} \end{align*}

Proof

a.

ord e=1=pi0    eGi\text{ord }e=1=p_i^0 \implies e \in G_i \\ gGi    ord g=pir    {gpir=ek<pir:gke    {(g1)pir=ek<pir:(g1)ke    ord g1=pir    g1Gig \in G_i \implies \text{ord }g = p_i^r \implies \begin{cases} g^{p_i^r}=e \\ \forall k < p_i^r: g^k \ne e \end{cases} \implies \\ \begin{cases} (g^{-1})^{p_i^r}=e \\ \forall k < p_i^r: (g^{-1})^k \ne e \end{cases} \implies \text{ord }g^{-1} = p_i^r \implies g^{-1} \in G_i g,hGi    ord g=pir,ord h=pis    (gh)pimax(r,s)=gpimax(r,s)hpimax(r,s)=1    ord ghpimax(r,s)    ord gh=pit    ghGig, h \in G_i \implies \text{ord }g = p_i^r, \text{ord }h = p_i^s \implies \\ (gh)^{p_i^{\max(r, s)}}=g^{p_i^{\max(r, s)}}h^{p_i^{\max(r, s)}} = 1 \implies \text{ord }gh \mid p_i^{\max(r, s)} \implies \\ \text{ord }gh = p_i^t \implies gh \in G_i

b.

Obvious by construction

c.

gGiGj    r,s:ord g=pir,ord g=pjs    gcd(pi,pj)=1ord g=1    g=eg \in G_i \cap G_j \implies \exists r, s: \text{ord }g = p_i^r, \text{ord }g = p_j^s \overset{\gcd(p_i, p_j)=1} \implies \\ \text{ord }g = 1 \implies g = e

d.

gG    ord gG    ord g=p1β1pkβkai:=ord g/piβi    gcd(a1,,ak)=1    bi:iaibi=1g=giaibi=ga1b1gakbkgaibipiβi=gbiord g=e    ord gaibipiβi    ord gaibi=piγi    gaibiGig \in G \implies \text{ord }g \mid |G| \implies \text{ord }g=p_1^{\beta_1}\ldots p_k^{\beta_k} \\ a_i:=\text{ord }g / p_i^{\beta_i} \implies \gcd(a_1, \ldots, a_k)=1 \implies \\ \exist b_i: \sum_i a_ib_i = 1 \\ g = g^{\sum_i a_ib_i}=g^{a_1b_1} \ldots g^{a_kb_k} \\ g^{a_ib_ip_i^{\beta_i}}=g^{b_i\text{ord }g} = e \implies \text{ord } g^{a_ib_i} \mid p_i^{\beta_i} \implies \\\text{ord } g^{a_ib_i} = p_i^{\gamma_i} \implies g^{a_ib_i} \in G_i

Now assuming gi:=gaibiGig_i:=g^{a_ib_i} \in G_i we finish the proof.

\square

Proposition 2.2.38: Fundamental Theorem of Finite Abelian Groups

GGAG=p1α1pnαnGGZpi1β1×Zpi2β2××Zpikβk,1ijn,βjαij\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &|G|= p_1^{\alpha_1}\ldots p_n^{\alpha_n}\\ \hline \\ &G \cong_G \Z_{p_{i_1}^{\beta_1}}\times \Z_{p_{i_2}^{\beta_2}} \times \ldots \times \Z_{p_{i_k}^{\beta_k}}, 1 \le i_j \le n, \beta_j \le \alpha_{i_j} \end{align*}

Proof

By (2.2.37)(2.2.37) we can break GG into internal direct product of pip_i-groups GiG_i. By (2.2.33)(2.2.33) it's isomorphic to external direct product. By (2.2.36)(2.2.36), each GiG_{i} is decomposed into a product of cyclic groups, Gi=piαi|G_i| = p_i^{\alpha_i}. By (2.2.31)(2.2.31) each of these groups is isomorphic to some Zpiαi\Z_{p_i^{\alpha_i}}.

\square

Proposition 2.2.39: d-torsion group structure

GGAG=nrG[d]:={gG:gd=e}dn    G[d]=drGGZnr\begin{align*} &\sphericalangle \\ &G \in \mathcal G^\mathcal A \\ &|G| = n^r \\ &G[d]:= \{g \in G: g^d=e\}\\ &d \mid n \implies |G[d]|=d^r \\ \hline \\ &G \cong_G \Z_n^r \end{align*}

Proof

Let's start with proving that Zpa[pb]=pmin(a,b)|\Z_{p^{a}}[p^b]|=p^{\min(a, b)}:

ba:papb    Zpa[pb]=pab<a:Zpa[pb]={nZpa:pbn=0}={0,pab,2pab,,(pb1)pab}    Zpa[pb]=pb\forall b \ge a: p^a \mid p^b \implies |\Z_{p^{a}}[p^b]|=p^a \\ \forall b < a:\Z_{p^{a}}[p^b]=\{n \in \Z_{p^a}:p^b\cdot n = 0\} = \{0, p^{a-b}, 2p^{a-b}, \ldots, (p^b-1)p^{a-b} \} \implies \\ |\Z_{p^{a}}[p^b]|=p^{b} \\

Now we will consider the case n=pβ,pPn = p^{\beta}, p \in \mathfrak P.

By (2.2.38)(2.2.38):

GGZpα1×Zpα2×Zpαk,iαi=βrG \cong_G \Z_{p^{\alpha_{1}}} \times \Z_{p^{\alpha_{2}}} \times \ldots \Z_{{p}^{\alpha_{k}}}, \sum_i \alpha_i = \beta r

So we have G[pb]=pmin(α1,b)pmin(αk,b)|G[p^b]|=p^{\min(\alpha_1, b)} \ldots p^{\min(\alpha_k, b)}. On the other hand we know that G[pb]=pbr|G[p^b]| = p^{br}, so:

b:i=1kmin(αi,b)=br\forall b: \sum_{i=1}^k \min(\alpha_i, b)=br \\

From that we can derive:

b=minαi    bk=br    k=rb=maxαi    βr=i=1rαi=br    maxαi=b=βb = \min{\alpha_i} \implies bk=br \implies k = r \\ b = \max{\alpha_i} \implies \beta r = \sum_{i=1}^r \alpha_i=br \implies \max{\alpha_i} =b= \beta \\

Since all αi1\alpha_i \ge 1 and maxαi=β\max{\alpha_i} = \beta and i=1rαi=βr\sum_{i=1}^r \alpha_i = \beta r it follows that αi=β\alpha_i = \beta. So

GGZpβrG \cong_G \Z_{p^{\beta}}^r

So we finished the proof for the case n=pβ,pPn = p^{\beta}, p \in \mathfrak P.

Now consider general case n=p1β1pnβnn = p_1^{\beta_1}\ldots p_n^{\beta_n}. By (2.2.38)(2.2.38):

GGZp1α1,1××Zp1α1,k1H1××Zpnαn,1××Zpnαn,knHnG \cong_G \underbrace{\Z_{p_1^{\alpha_{1, 1}}} \times \ldots \times \Z_{p_1^{\alpha_{1, k_1}}}}_{H_1} \times \ldots \times \underbrace{\Z_{p_n^{\alpha_{n, 1}}} \times \ldots \times \Z_{p_n^{\alpha_{n, k_n}}}}_{H_n}

First note that gZpiα:gpjβ=e    ord gpjb,ord gpiα    ord g=1    g=e\forall g \in \Z_{p_i^\alpha}: g^{p_j^\beta} = e \implies \text{ord }g \mid p_j^b, \text{ord }g \mid p_i^\alpha \implies \text{ord } g = 1 \implies g = e. So we have:

α,i:G[piα]=Hi[piα]\forall \alpha, i: |G[p_i^\alpha]|=|H_i[p_i^\alpha]|

But that means that the conditions of theorem holds for HiH_i with Hi=piβi|H_i|=p_i^{\beta_i}. So we proved above that:

HiGZpiβirH_i \cong_G \Z_{p_i^{\beta_i}}^r

So we know that:

GGZp1β1r××ZpnβnrG \cong_G \Z_{p_1^{\beta_1}}^r \times \ldots \times \Z_{p_n^{\beta_n}}^r

By the Chinese remainder theorem (2.3.14)(2.3.14) that we'll prove in the next section:

ZnGZp1β1××Zpkβk\Z_n \cong_G \Z_{p_1^{\beta_1}} \times \ldots \times \Z_{p_k^{\beta_k}}

And thus we finish the proof

\square

Exercises

  1. How many distinct groups (up to relabeling the elements, that is up to isomorphism) of order 4 exist?

  2. How many non-trivial subgroups does the group Z2×Z2\Z_2 \times \Z_2 have? (trivial subgroups are {e}\{e\} and the group itself)

  3. Is Z2×Z2GZ4\Z_2 \times \Z_2 \cong_G \Z_4?

  4. What is the order of 6Z156 \in \Z_{15}

  5. What is the order of 64Z25764 \in \Z^*_{257}

  6. What is the order of (6,15,4)Z30×Z45×Z24(6, 15, 4) \in \Z_{30} \times \Z_{45} \times \Z_{24}

  7. If aa and bb have orders 31 and 32, what is the order of the group aGbG\lang a \rang_G \cap \lang b \rang_G?

  8. Compute 53999+3999+3(mod31000)5^{3^{999}+3^{999}+3}\pmod {3^{1000}}

  9. Make a disjoint cycle representation of (1423)(24)(56)(1324)(1\, 4\, 2 \, 3)(2\, 4)(5\, 6)(1 \, 3 \, 2 \, 4)

  10. Is Z8GZ4\Z_8^* \cong_G \Z_4?

  11. What is the number of different isomorphisms for Z6GZ6\Z_6 \cong_G \Z_6

  12. How many different abelian groups of order 720 exist?