Skip to main content

2.8 Field extensions

def: Subfield

EFL(G,+)EL(G,)ELFE\begin{align*} &\sphericalangle \\ &E \in \mathcal F \\ &L \subseteq_{(G, +)} E \\ &L^* \subseteq_{(G, \cdot)} E^* \\ \hline \\ &L \subseteq_F E \end{align*}

def: Field homomorphism

F,EFϕ:FREϕ(1)=1ϕ:FFE\begin{align*} &\sphericalangle \\ &F, E \in \mathcal F \\ &\phi: F \rightsquigarrow_R E \\ &\phi(1)=1 \\ \hline \\ &\phi: F \rightsquigarrow_F E \\ \end{align*}

def: Field extension

EFFFEE/FF,Eextension of F,Fbase field\begin{align*} &\sphericalangle \\ &E \in \mathcal F \\ &F \subseteq_F E \\ \hline \\ & E/F \in \mathcal F,E - \text{extension of }F, F - \text{base field} \end{align*}
note

Do not confuse the notation E/FE/F with factor group and factor rings. These are different concepts. Overall the meaning of the notation X/YX/Y depends on XX and YY being groups, rings or fields.

def: Extension degree

E/FF    EMF[E:F]:=dimFE\begin{align*} &\sphericalangle \\ &E / F \in \mathcal F \implies E \in \mathcal M_F \\ \hline \\ &[E:F] := \dim_F E \end{align*}

Proposition 2.8.1: Evaluation homomorphism

E/FFαEεα:F[x]E,ff(α)εα:F[x]FE\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &\alpha \in E \\ &\varepsilon_{\alpha}: F[x] \to E, f \mapsto f(\alpha) \\ \hline \\ &\varepsilon_{\alpha}: F[x] \rightsquigarrow_F E \hspace{1cm} \end{align*}

Proof

p,qF[x]:εα(p+q)=(p+q)(α)=p(α)+q(α)=εα(p)+εα(q)εα(pq)=(pq)(α)=p(α)q(α)=εα(p)εα(q)\forall p, q \in F[x]: \\ \varepsilon_\alpha(p+q) = (p+q)(\alpha)=p(\alpha)+q(\alpha)=\varepsilon_\alpha(p)+\varepsilon_\alpha(q) \\ \varepsilon_\alpha(pq)=(pq)(\alpha)=p(\alpha)q(\alpha)=\varepsilon_\alpha(p)\varepsilon_\alpha(q)

\square

Extensions taxonomy

Fields taxonomy Fields taxonomy

Finitely generated extensions

def: Finitely generated extension

E/FFAE,A<F(A):FFF(A)FE,AF(A)M:FFMFE,AM    F(A)MF(A)finitely generated extension\begin{align*} &\sphericalangle \\ & E/F \in \mathcal F \\ & A \subseteq E, |A| \lt \infty \\ & F(A): F \subseteq_F F(A) \subseteq_F E, A \subseteq F(A) \\ &\forall M: F \subseteq_F M \subseteq_F E, A \subseteq M \implies F(A) \subseteq M\\ \hline \\ &F(A)- \text{finitely generated extension} \end{align*}
note

If A={α1,,αn}A=\{\alpha_1, \ldots, \alpha_n\} then we just write F(α1,,αn)F(\alpha_1, \ldots, \alpha_n)

def: Simple extension

E/FFαEF(α)simple extension\begin{align*} &\sphericalangle \\ & E/F \in \mathcal F \\ & \alpha \in E\\ \hline \\ &F(\alpha)- \text{simple extension} \end{align*}

Algebraic and transcendental elements

def: Algebraic closure, algebraic and transcendental elements

E/FFFE:={αE:p(x)F[x]F:p(α)=0}FEalgebraic closure of F in EαFEalgebraic element over F in the field EβEFEtranscendental element over F in the field E\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &\overline{F}_E:=\{\alpha \in E: \exists p(x) \in F[x] \setminus F: p(\alpha)=0\} \\ \hline \\ &\overline{F}_E - \text{algebraic closure of } F \text{ in } E \\ & \alpha \in \overline{F}_E - \text{algebraic element over } F \text{ in the field } E \\ &\beta \in E \setminus \overline{F}_E - \text{transcendental element over } F \text{ in the field } E \\ \end{align*}

def: Minimal polynomial

E/FFαFEpF[x],LC(p)=1,p(α)=0qF[x],q(α)=0:pqpolF(α):=pminimal polynomial for α over F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in \overline{F}_E \\ &p \in F[x]^-, LC(p)=1, p(\alpha) = 0 \\ &\forall q \in F[x], q(\alpha) = 0: p \mid q \\ \hline \\ &\mathfrak{pol}_F(\alpha):= p - \text{minimal polynomial for } \alpha \text{ over }F\\ \end{align*}

Proposition 2.8.2: Minimal polynomial is unique

E/FFαFE!polF(α)p,qF[x],p(α)=q(α)=0    p(x)=uq(x),uF\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in \overline{F}_E \\ \hline \\ &\begin{align*} &\exists! \mathfrak{pol}_F(\alpha) \hspace{0.5cm} \tag{a}\\ &p, q \in F[x]^-, p(\alpha)=q(\alpha)=0 \implies p(x)=uq(x), u \in F^* \hspace{0.5cm} \tag{b}\\ \end{align*} & \end{align*}

Proof

a.

εα\varepsilon_\alpha - evaluation homomorphism. Note that all polynomials which has α\alpha as a root are exactly kerϕ\ker \phi.

(2.5.13)    F[x]RPID    (2.3.8)p(x)F[x]F:kerεα=p(x)I(2.5.13) \implies F[x] \in \mathcal R^{\mathcal {PID}} \overset{(2.3.8)}\implies \\ \exists p(x) \in F[x] \setminus F: \ker \varepsilon_\alpha = \lang p(x) \rang_I

Thus qF[x],q(α)=0    pqq \in F[x], q(\alpha) = 0 \implies p \mid q. Any polynomial of the same degree must be of the form ap(x)ap(x), aFa \in F. Thus adding the requirement LC(p)=1LC(p)=1, we finish the proof.

b.

polF(α)p,polF(α)q    p=upolF(α),q=vpolF(α)p,q,polF(α)F[x]    u,vF    p=uv1q=mq,mF\mathfrak{pol}_F(\alpha) \mid p, \mathfrak{pol}_F(\alpha) \mid q \implies p = u \cdot \mathfrak{pol}_F(\alpha), q = v \cdot \mathfrak{pol}_F(\alpha) \\ p, q, \mathfrak{pol}_F(\alpha) \in F[x]^- \implies u,v \in F^* \implies p=uv^{-1}q=mq, m \in F^*

\square

def: Algebraic element degree

E/FFαFEdegα:=degpolF(α)\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in \overline{F}_E \\ \hline \\ &\deg \alpha := \deg \mathfrak{pol}_F(\alpha) \end{align*}

Algebraic extensions

def: Algebraic extension

E/FFE=FEE/AF,Ealgebraic extension of F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &E = \overline{F}_E \\ \hline \\ &E/_AF, E - \text{algebraic extension of } F \end{align*}

Proposition 2.8.3: Simple algebraic extension is a polynomials factor field

E/FFαFEη:F[x]/polF(α)IF(α)aF:η(a+polF(α)I)=aη(x+polF(α)I)=α\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in \overline{F}_E \\ \hline \\ &\begin{align*} & \exists \eta: F[x] / \lang \mathfrak{pol}_F(\alpha) \rang_I \cong F(\alpha) \hspace{1cm} \tag{a}\\ & \forall a \in F: \eta(a+\lang \mathfrak{pol}_F(\alpha) \rang_I)=a \hspace{1cm} \tag{b}\\ & \eta(x + \lang \mathfrak{pol}_F(\alpha) \rang_I) = \alpha \tag{c} \end{align*} \end{align*}

Proof

a.

εα\varepsilon_\alpha - evaluation homomorphism from (2.8.1)(2.8.1). It's easy to see that kerεα=polF(α)I,εα(F[x])=F[α]\ker \varepsilon_{\alpha}=\lang \mathfrak{pol}_F(\alpha) \rang_I, \varepsilon_\alpha(F[x])=F[\alpha].

(2.3.9)    F[α]F[x]/polF(α)I(2.5.13)    F[x]RPIDF[x]RPID,polF(α)F[x]    (2.4.14)polF(α)IMI(F[x])    (2.4.21)F[x]/polF(α)IF(2.3.9) \implies F[\alpha] \cong F[x] / \lang \mathfrak{pol}_F(\alpha)\rang_I \\ (2.5.13) \implies F[x] \in \mathcal R^{\mathcal{PID}}\\ F[x] \in \mathcal R^{\mathcal{PID}}, \mathfrak{pol}_F(\alpha) \in F[x]^- \overset{(2.4.14)}\implies \\\lang \mathfrak{pol}_F(\alpha)\rang_I \in \mathfrak M_I(F[x]) \overset{(2.4.21)}\implies F[x] / \lang \mathfrak{pol}_F(\alpha)\rang_I \in \mathcal F

So F[α]F[x]/polF(α)I    F[α]FF[\alpha] \cong F[x] / \lang \mathfrak{pol}_F(\alpha)\rang_I \implies F[\alpha] \in \mathcal F.

F,αF[α],F[α]F    F(α)F[α]F, \alpha \in F[\alpha], F[\alpha] \in \mathcal F \implies F(\alpha) \subseteq F[\alpha]

But it's also obvious that every element of F[α]F[\alpha] will be necessary in F(α)F(\alpha). Thus F(α)=F[α]F[x]/polF(α)I F(\alpha)=F[\alpha] \cong F[x] / \lang \mathfrak{pol}_F(\alpha)\rang_I

b., c.

By construction of the isomorphism in the first isomorphism theorem we must have

aF:η(a+polF(α)I)=εα(a)=aη(x+polF(α)I)=εα(x)=α\forall a \in F: \eta(a+\lang \mathfrak{pol}_F(\alpha) \rang_I)=\varepsilon_\alpha(a)=a \\ \eta(x+\lang \mathfrak{pol}_F(\alpha) \rang_I)=\varepsilon_\alpha(x)=\alpha

\square

note

From the proposition it's also clear that no matter what root of the polynomial we take to build an extensions, all such extensions are isomorphic

Example: α=2\alpha=\sqrt 2

Consider Q(2)\mathbb Q(\sqrt 2). The minimal polynomial over Q\mathbb Q will be p(x):=x22p(x):=x^2-2. Why it's irreducible? The only way for it to be reducible is to be p(x)=(xa)(xb)p(x)=(x-a)(x-b) which would imply a,bQ:ab=2a, b \in \mathbb Q: ab=\sqrt 2 which is impossible in rationals. So we'll have Q(2)Q[x]/x22I\mathbb Q(\sqrt 2)\cong \mathbb Q[x]/\lang x^2-2 \rang_I. Note that Q(2)={a+b2,a,bQ}\mathbb Q(\sqrt 2)=\{a+b\sqrt 2, a, b \in \mathbb Q\}, while Q[x]/x22I={a+bx,a,b,Q}\mathbb Q[x]/\lang x^2-2 \rang_I = \{a+bx, a, b, \in \mathbb Q\}. It's pretty clear that these two fields are isomorphic and each aQaa\in \mathbb Q \mapsto a and 2x\sqrt 2 \mapsto x. Exactly as (2.8.3)(2.8.3) states.

note

It may come as a surprise that a field F(α)F(\alpha) can be isomorphic to a quotient field of polynomials. One might wonder, should the field not also include fractions like 1α\frac{1}{\alpha}? To clarify, let's look at a straightforward example: consider the field Q(2)\mathbb Q(\sqrt{2}), which is an extension of Q\mathbb Q where α=2\alpha = \sqrt{2}. Within this field, 12\frac{1}{\sqrt{2}} simplifies to 22\frac{\sqrt{2}}{2}, showing that it can be represented as a polynomial of degree one in α\alpha.

Finite extensions

def: Finite extension

E/FF[E:F]<Efinite extension of F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &[E: F] < \infty \\ \hline \\ &E - \text{finite extension of } F \\ \end{align*}

Proposition 2.8.4: Simple algebraic extension is finite

E/FFαFE[F(α):F]=degαn:=degα,{1,α,,αn1}BF(F(α))\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in \overline{F}_E \\ \hline \\ &\begin{align*} &[F(\alpha):F] = \deg \alpha \tag{a}\\ &n:=\deg \alpha, \{1, \alpha, \ldots, \alpha^{n-1} \} \in \mathfrak B_F(F(\alpha)) \hspace{1cm} \tag{b}\\ \end{align*} \end{align*}

Proof

From (2.8.3)(2.8.3) we know that F(α)F[x]/polF(α)IF(\alpha) \cong F[x]/\lang \mathfrak{pol}_F(\alpha) \rang_I. Assume polF(α)=xn+an1xn1++a0\mathfrak{pol}_F(\alpha) = x^n+a_{n-1}x^{n-1} + \ldots+a_0. Consider bxn+polF(α)I=bxnb(xn+an1xn1++a0)+polF(α)I=ban1xn1++ba0+polF(α)Ibx^n + \lang \mathfrak{pol}_F(\alpha) \rang_I=bx^n - b(x^n+a_{n-1}x^{n-1} + \ldots+a_0) + \lang \mathfrak{pol}_F(\alpha) \rang_I=ba_{n-1}x^{n-1} + \ldots+ba_0 + \lang \mathfrak{pol}_F(\alpha) \rang_I. Using the same techinque we can reduce any plolynomial of degree n\ge n to polynomial of degree n1\leq n-1. So 1+polF(α)I,x+polF(α)I,,xn1+polF(α)IM=F[x]/polF(α)I\lang 1 + \lang \mathfrak{pol}_F(\alpha) \rang_I, x+\lang \mathfrak{pol}_F(\alpha) \rang_I, \ldots, x^{n-1} + \lang \mathfrak{pol}_F(\alpha) \rang_I \rang_M=F[x]/\lang \mathfrak{pol}_F(\alpha) \rang_I. Or using isomopshism properties from (2.8.3)(2.8.3):

1,α,,αn1I=F(α)\lang 1, \alpha, \ldots, \alpha^{n-1} \rang_I = F(\alpha)

Because n=degα=degpolF(α)n=\deg \alpha = \deg \mathfrak {pol}_F(\alpha), α\alpha cannot be a root of a polynomial of degree less than nn, so an1αn1++a0    an1==a0a_{n-1}\alpha^{n-1} + \ldots+a_0 \implies a_{n-1} = \ldots = a_0.

Thus we proved {1,α,,αn1}BF(F(α))\{1, \alpha, \ldots, \alpha^{n-1} \} \in \mathfrak B_F(F(\alpha))

\square

Proposition 2.8.5: Finite extension is algebraic

E/FF[E:F]<E/AF\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &[E:F] \lt \infty \\ \hline \\ &E /_A F \end{align*}

Proof

n:=[E:F]αE    {1,α,,αn}linearly dependent in MF    a1,,anF,ai0:a0+a1α++anαn=0    pF[x]F:p(α)=0n:=[E:F] \\ \forall \alpha \in E \implies \{1, \alpha, \ldots , \alpha^n\} - \text{linearly dependent in } \mathcal M_F \implies\\ \exist a_1, \ldots, a_n \in F, \exists a_i \ne 0: a_0+a_1 \alpha + \ldots + a_n \alpha^n=0 \implies \\ \exists p \in F[x] \setminus F: p(\alpha) = 0

\square

Proposition 2.8.6: Finite extension chain: dimension and basis

E/F/KF[E:F]<,[F:K]<BK(E)=BF(E)BK(F)[E:K]=[E:F][F:K]\begin{align*} &\sphericalangle \\ &E/F/K \in \mathcal F \\ &[E:F] \lt \infty, [F:K] \lt \infty \\ \hline \\ &\begin{align*} &\mathfrak B_K(E)=\mathfrak B_F(E)\mathfrak B_K(F) \tag{a}\\ &[E:K]=[E:F][F:K] \hspace{1cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

BK(F)={x1,,xn},BF(E)={y1,,ym}\mathfrak B_K(F)=\{x_1, \ldots, x_n\}, \mathfrak B_F(E)=\{y_1, \ldots, y_m\} \\ uE    u=ibiyi,biFbiF    bi=jcijxj    u=i(jcijxj)yi=i,jcij(xjyi)    BK(F)BF(E)M=Eu \in E \implies u = \sum_i b_iy_i, b_i \in F \\ b_i \in F \implies b_i = \sum_jc_{ij}x_j \implies \\ u = \sum_i(\sum_jc_{ij}x_j)y_i =\sum_{i,j}c_{ij}(x_jy_i) \implies \\ \lang \mathfrak B_K(F)\mathfrak B_F(E) \rang_M =E i,jcijxiyj=j(icijxi)yj    j:icijxi=0    i,j:cij=0    BK(E)=BK(F)BF(E)\sum_{i, j}c_{ij}x_iy_j = \sum_{j}(\sum_{i}c_{ij}x_i)y_j \implies \\ \forall j: \sum_{i}c_{ij}x_i=0 \implies \forall i,j: c_{ij}=0 \implies \\ \mathfrak B_K(E)=\mathfrak B_K(F)\mathfrak B_F(E)

b.

Follows from (a)(a).

\square

Proposition 2.8.7: Finite extension is finitely generated algebraic extension

EFFFE[E:F]<    α1,,αnFE:E=F(α1,,αn)\begin{align*} &\sphericalangle \\ &E \in \mathcal F \\ &F \subseteq_F E\\ \hline \\ &[E:F]<\infty \iff \exists \alpha_1, \ldots, \alpha_n \in \overline{F}_E: E = F(\alpha_1, \ldots, \alpha_n)\\ \end{align*}

Proof

    \implies

BF(E)={α1,,αn}BF(E)E    E/F(α1,,αn)BF(E)M=E    E=F(α1,,αn)(2.8.5)    αiFE\mathfrak B_F(E)=\{\alpha_1, \ldots, \alpha_n\} \\ \mathfrak B_F(E) \subseteq E \implies E/F(\alpha_1, \ldots, \alpha_n)\\ \lang \mathfrak B_F(E) \rang_M=E \implies E = F(\alpha_1, \ldots, \alpha_n) \\ (2.8.5) \implies \alpha_i \in \overline{F}_E

    \impliedby

Since F(α1,,αi1)(αi)=F(α1,,αi)F(\alpha_1, \ldots, \alpha_{i-1})(\alpha_i) = F(\alpha_1, \ldots, \alpha_i) it follows that F(α1,,αi)/AF(α1,,αi1)F(\alpha_1, \ldots, \alpha_i) /_A F(\alpha_1, \ldots, \alpha_{i-1}) and by (2.8.4)(2.8.4) [F(α1,,αi):F(α1,,αi1)]<[F(\alpha_1, \ldots, \alpha_i): F(\alpha_1, \ldots, \alpha_{i-1})]< \infty.

(2.8.6.b)    [E:F]==[F(α1,,αn):F(α1,,αn1)][F(α1):F]<(2.8.6.b) \implies [E : F]= \\ =[F(\alpha_1, \ldots, \alpha_n) : F(\alpha_1, \ldots, \alpha_{n-1})] \cdot \ldots \cdot [F(\alpha_1) : F] \lt \infty

\square

Splitting fields

def: Polynomials split in the field

FFPF[x]p(x)P:p(x)=u(xα1)(xαn),u,αiF,n0PF,P splits in F\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &P \subseteq F[x] \\ &\forall p(x) \in P: p(x)= u(x-\alpha_1)\ldots(x-\alpha_n), u, \alpha_i \in F, n \ge 0\\ \hline \\ &P \parallel F, P \text{ splits in } F \end{align*}
note

Similarly, for pF[x]p \in F[x] we'll use the notation pFp \parallel F if {p}F\{p\} \parallel F.

def: Splitting field

E/FFPF[x]FR:={αE:pP:p(α)=0}E=F(R)PEF(P):=Esplitting field for P over F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &P \subseteq F[x] \setminus F \\ &R:= \{\alpha \in E: \exists p \in P: p(\alpha) = 0\}\\ &E=F(R) \\ &P \parallel E \\ \hline \\ &F(\parallel P):=E - \text{splitting field for }P \text{ over } F \end{align*}
note

Obviously F(P)/AFF(\parallel P) /_A F

note

The notation assumes that the splitting field exists and unique. We will prove that the splitting field is indeed exists and unique up to isomorphism later in this section.

Proposition 2.8.8: Splitting field exists

FFp(x)F[x]FPF[x]FE/F,αE:p(α)=0,[E:F]degp,E=F(α)E/F:pE,[E:F]degp!,E=F(p)F(P)\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p(x) \in F[x] \setminus F \\ &P \subseteq F[x] \setminus F \\ \hline \\ &\begin{align*} &\exists E/F, \exists \alpha \in E: p(\alpha) = 0, [E:F] \leq \deg p, E = F(\alpha) \hspace{0.5cm} \tag{a}\\ &\exists E/F: p \parallel E, [E: F] \le \deg p!, E= F(\parallel p)\tag b \\ &\exists F(\parallel P) \tag c \\ \end{align*} \end{align*}

Proof

a.

By (2.5.13)(2.5.13) F[x]RUFDF[x] \in \mathcal R^{\mathcal {UFD}} so p(x)=p1(x)pn(x),piF[x]p(x) = p_1(x)\ldots p_n(x), p_i \in F^{-}[x]. Take p1(x)p_1(x) and define

E:=F[x]/p1(x)I E:=F[x] / \lang p_1(x) \rang_I

By (2.4.14)(2.4.14) p1(x)IMI(F[x])\lang p_1(x) \rang_I \in \mathfrak M_I(F[x]). And so by (2.4.21)(2.4.21) EFE \in \mathcal F.

Consider a natural homomorphism ϕ:FE,aa+p1(x)I\phi: F \to E, a \mapsto a + \lang p_1(x) \rang_I, it's obvious that kerϕ={0}\ker \phi = \{0\}, so Fϕ(F)EF \cong \phi(F) \subseteq E, so E/FE / F.

Next define

α:=x+p1(x)I\alpha: = x + \lang p_1(x) \rang_I

We have p1(α)=p1(x+p(x)I)=p1(x)+p(x)I=0+p1(x)Ip_1(\alpha)=p_1(x+\lang p(x) \rang_I)=p_1(x)+\lang p(x) \rang_I = 0 + \lang p_1(x) \rang_I. Note that 0+p1(x)I0 + \lang p_1(x) \rang_I is just 00 in EE so we can write p1(α)=0    p(α)=0p_1(\alpha)=0 \implies p(\alpha) = 0. So αFE\alpha \in \overline F_E and by (2.8.3)(2.8.3) we have E=F(α)E = F(\alpha).

By (2.8.2)(2.8.2) p1(x)=upolF(α),uFp_1(x)=u\cdot \mathfrak{pol}_F(\alpha), u \in F^* so by (2.8.4)(2.8.4) [E:F]=degα=degp1(x)degp[E:F]=\deg \alpha = \deg p_1(x) \leq \deg p.

b.

By induction on degp\deg p. If degp=1\deg p=1 then E:=FE:=F, [E:F]=1=1![E:F]=1=1! and pEp \parallel E.

If degp=n\deg p = n then by (a)(a) we can make E/F,[E:F]nE/F, [E:F] \leq n where αE:p(α)=0\exists \alpha \in E: p(\alpha) = 0, so p(x)=(xα)g(x)p(x) = (x-\alpha)g(x). Then by induction we have field L/E:[L:E](n1)!,gLL/E: [L:E] \le (n-1)!, g \parallel L. So we have pLp \parallel L, [L:F]=[L:E][E:F]n![L:F]=[L:E][E:F] \le n!.

Finally by construction on each induction step we built an extension F(α1,,αi)F(\alpha_1, \ldots, \alpha_i), so E=F(p)E= F(\parallel p).

c.

This part we'll only prove with for P<|P|<\infty, however it's also true for infinite PP.

In (b)(b) we proved that p(x)F[x]    F(p)p(x) \in F[x] \implies \exists F(\parallel p). If P={p1,,pn}P = \{p_1, \ldots, p_n\} then it's easy to check that F(P)=F(p1pn)F(\parallel P)=F(\parallel p_1\cdot \ldots \cdot p_n) so we finish the proof.

\square

Example: Splitting field of (x22)(x23)(x^2-2)(x^2-3)

Q((x22)(x23))=Q(2,3)\mathbb Q(\parallel (x^2-2)(x^2-3)) = \mathbb Q(\sqrt 2, \sqrt 3)

[Q(2,3):Q]=[Q(2,3):Q(2)][Q(2):Q]=22=4[\mathbb Q(\sqrt 2, \sqrt 3):\mathbb Q]=[\mathbb Q(\sqrt 2, \sqrt 3):\mathbb Q(\sqrt 2)][\mathbb Q(\sqrt 2):\mathbb Q]=\\ 2\cdot 2 = 4

Fields taxonomy Fields taxonomy

Example: Splitting field of x32x^3-2

The roots of x32x^3-2 are:

θ1=23,θ2=23i312,θ3=23i312\theta_1 = \sqrt[3]{2}, \theta_2 = \sqrt[3]{2}\cdot\frac{i\sqrt{3}-1}{2}, \theta_3 = \sqrt[3]{2}\cdot\frac{-i\sqrt{3}-1}{2}

Q(x32)=Q(θ1,θ2,θ3)=Q(23,3)\mathbb Q(\parallel x^3-2)=\mathbb Q(\theta_1, \theta_2, \theta_3)=\mathbb Q(\sqrt[3]2, \sqrt{-3})

[Q(23,3):Q]=6[\mathbb Q(\sqrt[3]2, \sqrt{-3}):\mathbb Q]=6 [Q(θ1,θ2,θ3):Q]=[Q(θ1):Q]3[Q(θ1,θ2):Q(θ1)]2[Q(θ1,θ2,θ3):Q(θ1,θ2)]1[\mathbb Q(\theta_1, \theta_2, \theta_3):\mathbb Q]=\underbrace{[\mathbb Q(\theta_1) : \mathbb Q]}_3\underbrace{[\mathbb Q(\theta_1, \theta_2):\mathbb Q(\theta_1)]}_2\underbrace{[\mathbb Q(\theta_1, \theta_2, \theta_3):\mathbb Q(\theta_1, \theta_2)]}_1

Splitting field example 2 Splitting field example 2

Proposition 2.8.9: Isomorphism of field extensions

E1/AF1,E2/AF2Fσ:F1F2αE1:p(x):=polF(α)βE2:pσ(β)=0ϕ:F1(α)F2(β),ϕ(α)=β,xF1:ϕ(x)=σ(x)\begin{align*} &\sphericalangle \\ &E_1/_AF_1, E_2/_AF_2 \in \mathcal F \\ &\sigma: F_1 \cong F_2 \\ &\alpha \in E_1: p(x):=\mathfrak{pol}_F(\alpha)\\ &\beta \in E_2: p^{\sigma}(\beta) = 0 \\ \hline \\ &\exists \phi:F_1(\alpha) \cong F_2(\beta), \phi(\alpha) = \beta, \forall x \in F_1:\phi(x)= \sigma(x) \end{align*}
note

Remember that pσ(x)p^{\sigma}(x) is action on coefficients

Proof

First, LC(p(x))=1    LC(pσ(x))=σ(LC(p(x)))=σ(1)=1LC(p(x))=1 \implies LC(p^{\sigma}(x))=\sigma(LC(p(x))) = \sigma(1)=1. Additionally it can be easily verified that under isomorphism irreducible elements map to irreducible elements, so pσ(x)F2[x] p^{\sigma}(x) \in F_2[x]^- and pσ(x)=polF(β)p^{\sigma}(x)=\mathfrak{pol}_F(\beta)

(2.5.1)    σx:F1[x]F2[x],p(x)pσ(x)(2.5.1) \implies \sigma_x: F_1[x]\cong F_2[x], p(x) \mapsto p^{\sigma}(x) \\

Additionally it's obvious that if rings R1R_1 and R2R_2 are isomorphic and ideal I1I_1 is mapped to ideal I2I_2 under the isomorphism then R1/I1R2/I2R_1/I_1 \cong R_2/I_2

So we have

σ(p(x)I)=pσ(x)I(2.4.14)    p(x)IMI(F1[x]),pσ(x)IMI(F2[x])F1[x]/p(x)IσxF2[x]/pσ(x)I    (2.8.3)F1(α)ηF1[x]/p(x)IσxF2[x]/pσ(x)IτF2(β)\sigma(\lang p(x) \rang_I) = \lang p^{\sigma}(x) \rang_I\\ (2.4.14) \implies \lang p(x) \rang_I \in \mathfrak M_I(F_1[x]),\lang p^{\sigma}(x) \rang_I \in \mathfrak M_I(F_2[x]) \\ F_1[x]/\lang p(x) \rang_I \overset{\sigma_x}\cong F_2[x]/\lang p^{\sigma}(x) \rang_I \overset{(2.8.3)}\implies \\ F_1(\alpha) \overset{\eta}\cong F_1[x]/\lang p(x) \rang_I \overset{\sigma_x}\cong F_2[x]/\lang p^{\sigma}(x) \rang_I \overset{\tau}\cong F_2(\beta)

So we define ϕ:=τσxη\phi:=\tau\sigma_x\eta.

Consider some aF1a \in F_1, let's see how it maps under ϕ\phi (refer to (2.8.3)(2.8.3)):

aηa+p(x)Iσxσ(a)+pσ(x)Iτσ(a)αηx+p(x)Iσxx+pσ(x)Iτβa \overset{\eta}\mapsto a+\lang p(x) \rang_I \overset{\sigma_x}\mapsto \sigma(a)+\lang p^{\sigma}(x) \rang_I \overset{\tau}\mapsto \sigma(a) \\ \alpha \overset{\eta}\mapsto x+\lang p(x) \rang_I \overset{\sigma_x}\mapsto x+\lang p^{\sigma}(x) \rang_I \overset{\tau}\mapsto \beta \\

So aF1:ϕ(x)=σ(x)\forall a \in F_1: \phi(x)=\sigma(x), and ϕ(α)=β\phi(\alpha) = \beta

\square

Propostion 2.8.10: Isomorphism extension theorem for one polynomial

F1,F2Fσ:F1F2p(x)F1[x]ϕ:F1(p(x))F2(pσ(x)),xF1:ϕ(x)=σ(x)\begin{align*} &\sphericalangle \\ &F_1, F_2 \in \mathcal F \\ &\sigma: F_1\cong F_2 \\ &p(x) \in F_1[x] \\ \hline \\ &\exists \phi: F_1 (\parallel p(x)) \cong F_2 (\parallel p^{\sigma}(x)), \forall x \in F_1: \phi(x)=\sigma(x) \end{align*}

Proof

We'll make a proof by the induction on n:=degp(x)n:=\deg p(x).

If n=1n=1 then F1(p)=F1,F2(pσ)=F2F_1( \parallel p)=F_1, F_2( \parallel p^{\sigma}) = F_2 and we're done.

Now assume the proposition holds for any k<nk<n. If pF1p \parallel F_1 then we have the same case as in n=1n=1. Otherwise let's take an irreducible monic factor of degree greater than 11 and denote it by q(x)q(x). It has a corresponding factor qσ(x)q^{\sigma}(x) in pσ(x)p^{\sigma}(x). By (2.8.10)(2.8.10) we can take αE1\alpha \in E_1 and βE2\beta \in E_2 such that η:F1(α)F2(β),p(x)=(xα)p1(x),pσ(x)=(xβ)p2(x)\exists \eta: F_1(\alpha) \cong F_2(\beta), p(x)=(x-\alpha)p_1(x), p^{\sigma}(x)=(x-\beta)p_2(x). We'll use the following diagram to illustrate:

E1ϕE2F1(α)ηF2(β)F1σF2 \begin{CD} E_1 @>\phi>> E_2 \\ @AAA @AAA \\ F_1(\alpha) @>\eta>> F_2(\beta) \\ @AAA @AAA \\ F_1 @>\sigma>> F_2 \end{CD}

Now if we consider E1:=F1(α)(p1),E2:=F2(β)(p2)E_1:=F_1(\alpha)(\parallel p_1), E_2:=F_2(\beta)(\parallel p_2), by induction hypothesis ϕ:E1E2:xF1(α):ϕ(x)=η(x)\exists \phi: E_1\cong E_2: \forall x \in F_1(\alpha): \phi(x)=\eta(x). Since xF1:η(x)=σ(x)\forall x \in F_1: \eta(x)=\sigma(x), we finish the proof.

\square

Theorem 2.8.11: Isomorphism extension theorem

F1,F2Fσ:F1F2PF1[x]FPσ:={pσ,pP}ϕ:F1(P)F2(Pσ),xF1:ϕ(x)=σ(x)\begin{align*} &\sphericalangle \\ &F_1, F_2 \in \mathcal F \\ &\sigma: F_1\cong F_2 \\ &P \subseteq F_1[x] \setminus F \\ &P^{\sigma}:= \{p^{\sigma}, p \in P\}\\ \hline \\ &\exists \phi: F_1 (\parallel P) \cong F_2 (\parallel P^{\sigma}), \forall x \in F_1: \phi(x)=\sigma(x) \end{align*}

Proof

The proof uses the fact that if P<|P|<\infty then F({p1,,pn})=F(p1pn)F(\parallel \{p_1, \ldots, p_n\})=F(\parallel p_1 \cdot \ldots \cdot p_n). It's also true for P=|P|=\infty but we'll not prove it here.

\square

Corrolary 2.8.12: Splitting field is unique up to isomorphism

FFPF[x]F!F(P)\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &P \subseteq F[x] \setminus F \\ \hline \\ &\exists! F (\parallel P) \end{align*}

Proof

Follows directly from (2.8.11)(2.8.11) by asuming F1=F2=FF_1=F_2=F.

\square

Lemma 2.8.13: Splitting fields under isomopshism

E1/F1,E2/F2Fσ:F1F2τ:E1FE2,τF1=σPF1[x]:E1=F1(P)Pσ:={pσ,pP}τ(E1)=F2(Pσ)\begin{align*} &\sphericalangle \\ &E_1/F_1, E_2/F_2 \in \mathcal F \\ &\sigma: F_1 \cong F_2 \\ &\tau: E_1 \rightsquigarrow_F E_2, \tau|_{F_1} = \sigma \\ &P \subseteq F_1[x]: E_1 = F_1(\parallel P) \\ &P^{\sigma} := \{p^{\sigma}, p \in P\} \\ \hline \\ &\tau(E_1)=F_2(\parallel P^{\sigma}) \end{align*}

Proof

Consider some piPp_i \in P, it splits in E1E_1 so pi(x)=uj(xαj),uF1,αjE1p_i(x)=u\prod_j(x-\alpha_j), u \in F_1^*, \alpha_j \in E_1. By (2.5.1)(2.5.1) we know that piσ=σx(pi)=τx(pi)=σ(u)j(xτ(αj))p_i^{\sigma}=\sigma_x(p_i)=\tau_x(p_i)=\sigma(u)\prod_j(x-\tau(\alpha_j)), so each piστ(E1)p_i^{\sigma} \parallel \tau(E_1) and has roots τ(α1),,τ(αn)\tau(\alpha_1), \ldots, \tau(\alpha_n).

Now take all roots of PP to be α1,,αk\alpha_1, \ldots, \alpha_k. If we consider properties of homomorphism it follows that τ(E1)=τ(F1(α1,,αk))=τ(F1)(τ(α1),,τ(αk))=σ(F1)(τ(α1),,τ(αk))=F2(τ(α1),,τ(αk))\tau(E_1)=\tau (F_1(\alpha_1, \ldots, \alpha_k))=\tau(F_1)(\tau(\alpha_1),\ldots, \tau(\alpha_k))=\sigma(F_1)(\tau(\alpha_1),\ldots, \tau(\alpha_k)) = F_2(\tau(\alpha_1),\ldots, \tau(\alpha_k)).

So we have τ(E1)/F2\tau(E_1)/F_2, Pστ(E1),τ(E1)P^{\sigma} \parallel \tau(E_1), \tau(E_1) is generated by the roots of PσP^{\sigma} implying τ(E1)=F2(Pσ)\tau(E_1)=F_2(\parallel P^{\sigma})

\square

Algebraic Closures

Proposition 2.8.14: Algebraic closure is a field

E/FFE/FE/F\begin{align*} &\sphericalangle \\ &E / F \in \mathcal F \\ \hline \\ &E/\overline{F}_E/F \end{align*}

Proof

By definition of FE\overline{F}_E it's obvious that FFEEF \subseteq \overline{F}_E \subseteq E. So all we need to prove is FEF\overline{F}_E \in \mathcal F.

Consider some a,bFEa, b \in \overline{F}_E. By (2.8.7)(2.8.7) [F(a,b):F]<[F(a, b): F] < \infty, so by (2.8.5)(2.8.5) F(a,b)/AFF(a, b)/_AF. So

F(a,b)E    F(a,b)=FF(a,b)FE    a±b,ab,ab1F(a,b)FE F(a, b) \subseteq E \implies F(a, b) =\overline F_{F(a, b)} \subseteq \overline F_E \implies \\ a\pm b, ab, ab^{-1} \in F(a, b) \subseteq \overline{F}_E

\square

Proposition 2.8.15: Algebraically closed field properties

FFThe following are equivalent:E/AF    E=FE/F,[E:F]<    E=FE/F    FE=FpF[x]F    F(p)=FpF[x]F    αF:p(α)=0pF[x]    degp(x)=1\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} & E/_AF \implies E =F\tag{a}\\ & E/F, [E:F]\lt \infty \implies E = F \tag{b}\\ & E/F \implies \overline{F}_E=F\tag{c}\\ & p \in F[x] \setminus F \implies F(\parallel p)=F \tag{d}\\ & p \in F[x] \setminus F \implies \exists \alpha \in F: p(\alpha) =0 \hspace{1cm} \tag{e}\\ & p \in F[x]^- \implies \deg p(x)=1 \tag{f}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

By (2.8.5):[E:F]<    E/AF    E=F(2.8.5): [E:F]\lt \infty \implies E /_A F \implies E = F

(b)    (c)(b) \implies (c)

Obviously FFEF \subseteq \overline{F}_E

aFE    [F(a):F]<    F(a)=F    aFa \in \overline{F}_E \implies [F(a) : F] < \infty \implies F(a) = F \implies a \in F

So FFEF \supseteq \overline{F}_E

(c)    (d)(c) \implies (d)

Consider some pF[x]p \in F[x]:

E:=F(p)    E/AF(aE    aFE=F)    F/EE: = F (\parallel p) \implies E /_A F \\ (a \in E \implies a \in \overline{F}_{E} =F) \implies F/E \\

So F(p)=FF(\parallel p)=F.

(d)    (e)(d) \implies (e)

Obvoius

(e)    (f)(e) \implies (f)

pF[x]    αF:p(α)=0p \in F[x]^- \implies \exists \alpha \in F: p(\alpha) =0. This means that pp has a linear factor. But that's the only factor it can have since it's irreducible. So degp=1\deg p = 1.

(f)    (a)(f) \implies (a)

Obviously FEF \subseteq E

aE,p:=polF(a)    degp=1    (2.8.4.b)[F(a):F]=1    aFEFa \in E, p:=\mathfrak{pol}_F(a) \implies \deg p = 1 \overset{(2.8.4.b)} \implies \\ [F(a):F]=1 \implies a \in F \\ E \subseteq F

\square

def: Algebraically closed field

FFF satisfies any condition of (2.8.15)Falgebraically closed field\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &F \text{ satisfies any condition of }(2.8.15) \\ \hline \\ &F - \text{algebraically closed field} \end{align*}

def: Algebraic closure

F/AFFFalgebraically closed fieldFalgebraic closure of F\begin{align*} &\sphericalangle \\ &\overline{F}/_AF \in \mathcal F \\ &\overline{F} - \text{algebraically closed field}\\ \hline \\ &\overline{F} - \text{algebraic closure of } F \end{align*}

Proposition 2.8.16: Every field has a unique algebraic closure

FF!F\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ \hline \\ &\exists! \overline F \end{align*}

Proof

The following proof for agebraic closures use infinite extensions or extensions of infinite set. If we wanted to make it strict we would need to introduce some notions from the set theory like cardinal numbers and associated theorems. Essentially we want to prove existence and uniqueness of algebraic closures not diving deep into its structure. So we'll rather give a semi-strict proof which conveys the main idea and does not involve additional notions from the set theory.

Consider E\mathcal E - the set of all algebraic extensions of FF. Let's introduce a partial order XY:=XYX \le Y := X\subseteq Y on it.

Each chain E1,E2,E_1, E_2, \ldots in E\mathcal E will have an upper bound E=iEiE = \bigcup_i E_i. EEE \in \mathcal E because it's a field and it's algebraic (can be verified by assuming aE:i:aEi\forall a \in E : \exists i: a \in E_i). So by Zorn's lemma we have a maximal FE\overline{F} \in E.

Any extension E/AF=FE/_A\overline F = \overline F by F\overline F maximality. So F\overline{F} is indeed algebraically closed.

By (2.8.15.d)(2.8.15.d) every polynomial splits in FF so we have F(F[x]F)=FF(\parallel F[x] \setminus F) = \overline{F}. By (2.8.12)(2.8.12) F(F[x]F)F(\parallel F[x] \setminus F) is unique and so is F\overline F.

\square

Transcendental extensions

def: Transcendental extension

E/FFaEFEE/TF,Etranscendental extension of F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &\exists a \in E \setminus \overline F_E\\ \hline \\ &E/_TF, E - \text{transcendental extension of } F \end{align*}

Proposition 2.8.17: Simple transcendental extension is a polynomials field of fractions

E/FFαEFE    F(α)F(F[x])\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ \hline \\ &\alpha \in E \setminus \overline F_E \iff F(\alpha) \cong \mathfrak F(F[x]) \end{align*}

Proof

εα\varepsilon_\alpha - evaluation homomorphism from (2.8.1)(2.8.1).

αEFE    pF[x]F:p(α)0    kerεα={0}    F[x]εα(F[x])=F[α]    F(F[x])F(F[α])\alpha \in E \setminus \overline F_E \iff \forall p \in F[x] \setminus F: p(\alpha) \ne 0 \iff \\ \ker \varepsilon_{\alpha} = \{0\} \iff F[x] \cong \varepsilon_\alpha(F[x]) = F[\alpha] \iff \\ \mathfrak F(F[x]) \cong \mathfrak F(F[\alpha])

Finally note that obviously FF(F[α]),αF(F[α])F \in \mathfrak F(F[\alpha]), \alpha \in \mathfrak F(F[\alpha]) and F(F[α])F\mathfrak F(F[\alpha]) \in \mathcal F, so F(α)F(F[α]).F(\alpha) \subseteq \mathfrak F(F[\alpha]). But also every elements of F(F[α])\mathfrak F(F[\alpha]) is f(α)g(α)\frac{f(\alpha)}{g(\alpha)}, which obviously belong to F(α)F(\alpha).

\square

note

This theorem also states that if E:=F(F[x])E:=\mathfrak F(F[x]) then F(x)=F(F[x])F(x)=\mathfrak F(F[x]), we'll use the notation F(x)F(x) further to denote field of fractions of polynomials ring. We'll call F(x)F(x) a function field.

def: Algebraically independent set

E/FFT:={t1,,tk}pF[x1,,xk]:p(t1,,tk)=0    p=0TA(F)Talgebraically independent over F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &T:= \{t_1, \ldots, t_k\}\\ &\forall p \in F[x_1, \ldots, x_k]: p(t_1, \ldots, t_k)=0 \implies p = 0 \\ \hline \\ &T \in \perp_A(F) \\ &T - \text{algebraically independent over } F \end{align*}
note

This is a generalization of linear indepence which operates only on linear polynomials to arbitrary polynomials. If we consider F[x1,,xk]=iFi[x1,,xk]F[x_1, \ldots, x_k]=\bigoplus_iF_i[x_1, \ldots, x_k] as a graded ring and replace F[x1,,xk]F[x_1, \ldots, x_k] with F1[x1,,xk]F_1[x_1, \ldots, x_k] in the definition of Algebraically independent set, we'll get the definition of linearly independent set.

Example: Algebraically independent set

Consider function field F(x1,,xn)F(x_1, \ldots, x_n). Then {x1,,xn}\{x_1, \ldots, x_n\} is algebraically independent set.

Example: Algebraically independece over chain of fields

E/L/F,SEE/L/F, S \subseteq E if SA(L)S \bot_A(L) then SA(F)S \bot_A(F).

Lemma 2.8.18: Transcendence basis and transcendental element

E/FFTA(F)tEF(T)ET{t}A(F)\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &T \in \bot_A(F) \\ & t \in E \setminus \overline {F(T)}_E \\ \hline \\ &T \cup \{t\} \in \bot_A(F) \end{align*}

Proof

Assume the proposition is false:

T{t}A(F)    pF[x1,,xn,y]{0},t1,,tnT:p(t1,,tn,t)=0T \cup \{t\} \notin \bot_A(F) \implies \\ \exists p \in F[x_1, \ldots, x_n, y] \setminus \{0\}, t_1, \ldots, t_n \in T: p(t_1, \ldots, t_n, t) = 0

Consider p(y)=p(t1,,tn,y)=j=0majyj,ajF[t1,,tn],am0p(y) = p(t_1, \ldots , t_n, y) = \sum_{j=0}^{m}a_jy^j, a_j \in F[t_1, \ldots, t_n], a_m \ne 0. Note that m1m \ge 1, otherwise the algebraic independence of TT is violated. Since p(t)=0p(t) = 0 it follows tF(t1,,tn)EF(T)Et \in \overline {F(t_1 , \ldots , t_n)}_E \subseteq \overline {F(T)}_E which is a contradiction.

\square

def: Transcendence basis

E/FFTETA(F)E/AF(T)TBFtr(E),Ttranscendence basis\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &T \subseteq E\\ &T \in \bot_A(F)\\ & E/_A F(T)\\ \hline \\ &T \in \mathfrak {B}^{\text{tr}}_F(E), T - \text{transcendence basis} \\ \end{align*}

Example: Transcendence basis in function field

Consder E:=F(x1,,xn)E:=F(x_1, \ldots, x_n). As mentioned in the example above {x1,,xn}A(F)\{x_1, \ldots, x_n\} \in \bot_A(F). So {x1,,xn}BFtr(E)\{x_1, \ldots, x_n\} \in \mathfrak {B}^{\text{tr}}_F(E).

Additionally T:={x1r1,,xnrn},ri1T:=\{x_1^{r_1}, \ldots, x_n^{r_n}\}, r_i \ge 1 is a transcendence basis of EE. Obviously TA(F)T \in \bot_A(F). Denote L:=F(T)L:=F(T) then E/ALE/_AL because any element xix_i is a root of polynomial p(t)=trixriL[t]p(t)=t^{r_i}-x^{r_i} \in L[t]

Proposition 2.8.19: Transcendence basis exists

E/FFSTESA(F)E/AF(T)MBFtr(E),SMT\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &S \subseteq T \subseteq E \\ &S \in \bot_A(F) \\ & E /_A F(T) \\ \hline \\ &\exists M \in \mathfrak {B}^{\text{tr}}_F(E), S \subseteq M\subseteq T \end{align*}

Proof

X:={Y:SYT,YA(F)}SX    XX:=\{Y: S \subseteq Y \subseteq T, Y \in \bot_A(F) \} \\ S \in X \implies X \ne \empty (X,P):=(X,)C=Y1,Y2,C(X)    i:YiPjYjX(X, \leq_P):=(X, \subseteq) \\ C = Y_1, Y_2, \ldots \in \mathfrak C(X) \implies \forall i: Y_i \leq_P \bigcup_jY_j \in X

Let's prove that jYjX\bigcup_jY_j \in X. The only way it can be violated is jYjA(F)\bigcup_jY_j \notin \bot_A(F). In that case consider the elements {y1,,yn}jYj:pF[x1,,xn]:p(y1,yn)=0\{y_1, \ldots, y_n\}\in \bigcup_jY_j:\exists p \in F[x_1, \ldots, x_n]:p(y_1, \ldots y_n)=0. k:{y1,,yn}Yk\exists k: \{y_1, \ldots, y_n\} \in Y_k, which contradicts YkC(X)Y_k \in \mathfrak C(X).

Thus jYjX\bigcup_jY_j \in X and

(2.1.3)    M:=maxPX(2.1.3) \implies \exists M:=\max_{\leq_P} X

Assume E/TF(M)E/_T F(M). If we assume E/AF(T)/AF(M)E /_A F(T) /_A F(M) then E/AF(M)E/_A F(M) which is a contradiction. So we have F(T)/TF(M)F(T) /_T F(M). If tT:tF(M)F(T)\forall t \in T: t \in \overline{F(M)}_{F(T)} we'll have by (2.8.7)(2.8.7) [F(T):F(M)]<[F(T): F(M)]<\infty, so by (2.8.5)(2.8.5) F(T)/AF(M)F(T)/_AF(M) which is a contradiction. So we can take tT,tF(T)F(M)F(T)t \in T, t \in F(T) \setminus \overline{F(M)}_{F(T)} and in (2.8.18)(2.8.18) assume E:=F(T),T:=M,F:=FE:=F(T), T:=M, F:=F to get M{t}A(F)M \cup \{t\} \in \bot_A(F). But that is a contradiction to the definition of MM, so we proved E/AF(M) E/_AF(M). But we also know that by defintion MA(F)M \in \bot_A(F), so MBFtr(E)M \in \mathfrak {B}^{\text{tr}}_F(E).

\square

note

The existence of basis follows from assuming S=S=\empty, T=ET=E. Then SA(E),E/AF(T)S \in \bot_A(E), E/_AF(T).

Proposition 2.8.20: Transcendence bases have the same cardinality

E/FFS,TBFtr(E)S<S=T\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &S, T \in \mathfrak {B}^{\text{tr}}_F(E) \\ &|S| \lt \infty \\ \hline \\ &|S|=|T| \end{align*}

Proof

S:={s1,,sn}S:=\{s_1, \ldots, s_n\}.

E/TF(S{s1}) E /_T F(S \setminus \{s_1\}), otherwise s1s_1 is a root of some polynomial in F(S{s1})F(S \setminus \{s_1\}) so SA(F)S \notin \bot_A(F).

E/AF(T)    tT:tEF(S{s1})E    {s2,,sn,t}A(F) E/_A F(T) \implies \exists t \in T: t \in E \setminus \overline{F(S \setminus \{s_1\})}_E \implies \{s_2, \ldots, s_n, t\} \in \bot_A(F)

Now note that {s1,,sn,t}A(F)\{s_1, \ldots, s_n, t\} \notin \bot_A(F), so s1F(s2,,sn,t)Es_1 \in \overline{F(s_2, \ldots, s_n, t)}_E and {t,s2,,sn}BFtr(E)\{t, s_2, \ldots, s_n\} \in \mathfrak{B}^{\text{tr}}_F(E).

Repeating this procedure we arrive at the basis {t1,,tn}\{t_1, \ldots, t_n\}, so T=S=n|T|=|S|=n

\square

note

This theorem is also true for infinte bases. However for our purposes a finite case will do.

def: Transcendence degree

E/FFTBFtr(E)trdegF(E):=T\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & T \in \mathfrak {B}^{\text{tr}}_F(E) \\ \hline \\ &\text{trdeg}_F(E):=|T| \\ \end{align*}

Example: Transcendence basis for a function field over elliptic curve

Consider some field FF and p(x,y):=y2x3+xF[x,y]p(x, y):=y^2-x^3+x \in F[x, y]. It can be shown directly that pF[x]p \in F[x]^-. Consider

A:=F[x,y]/pI,ARID A:=F[x, y]/\lang p \rang_I, A \in \mathcal R^{\mathcal ID}

Below is the proof that it's indeed an integral domain:

(2.5.13)    F[x,y]RUFD(2.4.12)    pP(F[x,y])(2.4.1)    pIPI(F[x,y])(2.4.8)    ARID(2.5.13) \implies F[x, y] \in \mathcal R^{\mathcal {UFD}} \\ (2.4.12) \implies p \in \mathfrak P(F[x, y]) \\ (2.4.1) \implies \lang p \rang_I \in \mathfrak P_I(F[x, y]) \\ (2.4.8) \implies A \in \mathcal R^{\mathcal{ID}}

Since ARIDA \in \mathcal R^{\mathcal{ID}} we can define a field of fractions on it:

E:=F(A)E:=\mathfrak F(A)

Note that E/FE/F, since FF is contained in EE in the form of constant polynomials. If we denote:

u:=x+pI,v:=y+pIu:= x + \lang p \rang_I, v:=y+\lang p \rang_I

Then

E=F(u,v)E = F(u, v)

Let's prove that {u}BFtr(E)\{u\} \in \mathfrak {B}^{\text{tr}}_F(E). First, E/AF(u)E/_A F(u), because v2=u3uv^2=u^3-u, so vv is a root of polynomial t2(u3u)(F(u))[t]t^2 - (u^3-u) \in (F(u))[t]. So all we need to prove is uEFEu \in E \setminus \overline F_E.

Assume otherwise: uFEu \in \overline F_E then we'll have E=FEE = \overline F_E. Below is the proof that in this case AFA \in \mathcal F:

αA,α0α1E=FE    αn+a1αn+1++an=0,aiF    α1=(a1+a2α++anαn1)A\alpha \in A, \alpha \ne 0 \\ \alpha^{-1} \in E=\overline F_E \implies \\ \alpha^{-n}+a_1\alpha^{-n+1}+\ldots + a_n=0, a_i \in F \implies \alpha^{-1}=-(a_1 + a_2\alpha+\ldots + a_{n}\alpha^{n-1}) \in A

Since AFA\in \mathcal F then pIM(F[x,y])\lang p \rang_I \in \mathfrak M(F[x,y]) but that cannot be true since pIx,yI\lang p \rang_I \subset \lang x, y \rang_I.

Proposition 2.8.21: Basis and transcendence degree of chain extensions

E/L/FFBFtr(E)=BFtr(L)+BLtr(E)trdegF(E)=trdegF(E)+trdegF(E)\begin{align*} &\sphericalangle \\ &E/L/F \in \mathcal F \\ \hline \\ &\begin{align*} & \mathfrak {B}^{\text{tr}}_F(E) = \mathfrak {B}^{\text{tr}}_F(L) + \mathfrak {B}^{\text{tr}}_L(E) \tag{a}\\ &\text{trdeg}_F(E)=\text{trdeg}_F(E)+\text{trdeg}_F(E) \tag{b} \hspace{1cm}\\ \end{align*} \end{align*}

Exercises

  1. Which of the following is true?

    a. Q(2)MQQ(3)\mathbb Q(\sqrt 2) \cong_{M_\mathbb Q} \mathbb Q(\sqrt 3)

    b. Q(2)FQ(3)\mathbb Q(\sqrt 2) \cong_{F} \mathbb Q(\sqrt 3)

    c. Is Q(2,3)FQ(2+3)\mathbb Q(\sqrt 2, \sqrt 3) \cong_F \mathbb Q(\sqrt 2 + \sqrt 3)

  2. Consider field extension E/L/K/FFE/L/K/F \in \mathcal F where

q:=4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787F:=FqK:=F(α),α2+1=0L:=K(β),β3α1=0E:=L(γ),γ2β=0q: = 400240955522166739341778982573590415655688281993900788533205813\\6124031650490837864442687629129015664037894272559787 \\ F: = \mathbb F_q \\ K:= F(\alpha), \alpha^2+1 = 0 \\ L:= K(\beta), \beta^3- \alpha - 1 = 0 \\ E:= L(\gamma), \gamma^2-\beta = 0 \\

a. What is [E:F][E:F]?

b. What is the basis of E/FE/F?

c. Calculate 14α3+(β2+2γ)314\alpha^3 + (\beta^2+ 2\gamma)^3

  1. Consider field F5\mathbb F_5

    a. Is F5[x]/x2+1IF5[x]/x2+3I\mathbb F_5[x]/\lang x^2+1\rang_I \cong \mathbb F_5[x]/\lang x^2+3\rang_I?

    b. Build an isomopshism between extenstions F5[x]/x2+2I=F5(a)\mathbb F_5[x]/\lang x^2+2\rang_I = \mathbb F_5(a) and F5[x]/x2+3I=F5(b)\mathbb F_5[x]/\lang x^2+3\rang_I= \mathbb F_5(b). What is the value of 2+3a2+3a under this isomopshism?

  2. If E=Q(x5x42x+2)E=\mathbb Q(\parallel x^5-x^4-2x+2). What is [E:Q][E:\mathbb Q]?