2.9 Galois theory
Galois group
def: Mapping restrictions
∢ f : X → Y Z ⊆ X f ∣ Z : Z → Y , x ↦ f ( x ) f ∣ Z − restriction of f to Z \begin{align*}
&\sphericalangle \\
&f: X \to Y \\
&Z \subseteq X\\
&f_{|Z}: Z \to Y, x \mapsto f(x)
\\
\hline
\\
&f_{|Z} - \text{restriction of } f \text{ to }Z
\end{align*} ∢ f : X → Y Z ⊆ X f ∣ Z : Z → Y , x ↦ f ( x ) f ∣ Z − restriction of f to Z
def: Endomorphism
∢ ϕ : E ⇝ F E ϕ ∈ End F ( E ) , ϕ − endomorphism on E \begin{align*}
&\sphericalangle \\
&\phi: E \rightsquigarrow_F E \\
\hline
\\
&\phi \in \text{End}_F(E), \phi - \text{ endomorphism on } E
\end{align*} ∢ ϕ : E ⇝ F E ϕ ∈ End F ( E ) , ϕ − endomorphism on E
def: Automorphism
∢ ϕ : E ≅ F E ϕ ∈ Aut F ( E ) , ϕ − automorphism on E \begin{align*}
&\sphericalangle \\
&\phi: E \cong_F E \\
\hline
\\
&\phi \in \text{Aut}_F(E), \phi - \text{ automorphism on } E
\end{align*} ∢ ϕ : E ≅ F E ϕ ∈ Aut F ( E ) , ϕ − automorphism on E
def: F-homomorphism
∢ E 1 / F , E 2 / F − extension field ϕ : E 1 ⇝ F E 2 ϕ ∣ F : x ↦ x ϕ : E 1 ⇝ ∣ F E 2 − F -homomorphism \begin{align*}
&\sphericalangle \\
&E_1/F, E_2/F - \text{extension field} \\
&\phi: E_1 \rightsquigarrow_F E_2 \\
&\phi_{|F}: x \mapsto x
\\
\hline
\\
&\phi: E_1 \rightsquigarrow_{|F} E_2 - F\text{-homomorphism}
\end{align*} ∢ E 1 / F , E 2 / F − extension field ϕ : E 1 ⇝ F E 2 ϕ ∣ F : x ↦ x ϕ : E 1 ⇝ ∣ F E 2 − F -homomorphism
def: F-isomorphism, F-automorphism
∢ E 1 / F , E 2 / F ∈ F ϕ : E 1 ⇝ ∣ F E 2 ϕ : E 1 ↔ E 2 ϕ : E 1 ≅ ∣ F E 2 − F -isomopshism E 1 = E 2 ⟹ ϕ − F -automorphism \begin{align*}
&\sphericalangle \\
&E_1/F, E_2/F \in \mathcal F \\
&\phi: E_1 \rightsquigarrow_{|F} E_2 \\
&\phi: E_1 \leftrightarrow E_2 \\
\hline
\\
&\phi: E_1 \cong_{|F} E_2 - F\text{-isomopshism} \\
& E_1 = E_2 \implies \phi - F\text{-automorphism}
\end{align*} ∢ E 1 / F , E 2 / F ∈ F ϕ : E 1 ⇝ ∣ F E 2 ϕ : E 1 ↔ E 2 ϕ : E 1 ≅ ∣ F E 2 − F -isomopshism E 1 = E 2 ⟹ ϕ − F -automorphism
def: Galois group
∢ E / F ∈ F Gal ( E / F ) : = { σ : E ≅ ∣ F E } − Galois group of E / F \begin{align*}
&\sphericalangle \\
&E / F \in \mathcal F
\\
\hline
\\
&\text{Gal}(E/F):=\{\sigma: E \cong_{|F}E\} - \text{Galois group of } E/F
\end{align*} ∢ E / F ∈ F Gal ( E / F ) := { σ : E ≅ ∣ F E } − Galois group of E / F
It's pretty easy to show that Galois group is indeed a group. A composition of automorphism is still automorphism and the field F F F is still fixed. Associativity is obvious as well the existence of the neutral element (identity automorphism) and inverse σ − 1 \sigma^{-1} σ − 1
Proposition 2.9.1: F-homomorphism properties
∢ E 1 / F , E 2 / F ∈ F ϕ : E 1 ⇝ ∣ F E 2 E 1 ⇝ M F E 2 E = E 1 = E 2 , [ E : F ] < ∞ ⟹ ϕ : E ≅ M F E ∀ p ∈ F [ x 1 , … , x n ] : ϕ ( p ( y 1 , … , y n ) ) = p ( ϕ ( y 1 ) , … , ϕ ( y n ) ) \begin{align*}
&\sphericalangle \\
&E_1/F, E_2/F \in \mathcal F \\
&\phi: E_1 \rightsquigarrow_{|F} E_2 \\
\hline
\\
&\begin{align*}
& E_1 \rightsquigarrow_{M_F} E_2 \tag{a}\\
& E=E_1=E_2, [E: F] < \infty \implies \phi: E \cong_{M_F} E \tag{b}\\
& \forall p \in F[x_1, \ldots, x_n]: \phi(p(y_1, \ldots, y_n))=p(\phi(y_1), \ldots, \phi(y_n)) \hspace{0.5cm}\tag{c}
\end{align*}
\end{align*} ∢ E 1 / F , E 2 / F ∈ F ϕ : E 1 ⇝ ∣ F E 2 E 1 ⇝ M F E 2 E = E 1 = E 2 , [ E : F ] < ∞ ⟹ ϕ : E ≅ M F E ∀ p ∈ F [ x 1 , … , x n ] : ϕ ( p ( y 1 , … , y n )) = p ( ϕ ( y 1 ) , … , ϕ ( y n )) ( a ) ( b ) ( c )
Proof
a.
∀ α ∈ F , x ∈ E 1 : ϕ ( α x ) = ϕ ( α ) ϕ ( x ) = α ϕ ( x ) \forall \alpha \in F, x \in E_1: \phi(\alpha x)=\phi(\alpha)\phi(x)=\alpha \phi(x) ∀ α ∈ F , x ∈ E 1 : ϕ ( αx ) = ϕ ( α ) ϕ ( x ) = α ϕ ( x )
b.
By ( 2.4.20 ) (2.4.20) ( 2.4.20 ) we know that ker ϕ = { 0 } \ker \phi = \{0\} ker ϕ = { 0 } . So dim F ( E ) = dim F ( ϕ ( E ) ) \dim_F(E)=\dim_F(\phi(E)) dim F ( E ) = dim F ( ϕ ( E )) . Then ϕ ( E ) ⊆ E \phi(E) \subseteq E ϕ ( E ) ⊆ E implies E = ϕ ( E ) E = \phi(E) E = ϕ ( E ) .
c.
ϕ ( p ( x 1 , … , x n ) ) = ϕ ( ∑ a i x 1 d i 1 … x n d i n ) = ∑ ϕ ( a i ) ϕ ( x 1 ) d i 1 … ϕ ( x n ) d i n = ∑ a i ϕ ( x 1 ) d i 1 … ϕ ( x n ) d i n = p ( ϕ ( x 1 ) , … , ϕ ( x n ) ) \phi(p(x_1, \ldots, x_n))=\phi(\sum a_ix_1^{d_{i_1}}\ldots x_n^{d_{i_n}}) = \\
\sum \phi(a_i)\phi(x_1)^{d_{i_1}}\ldots \phi(x_n)^{d_{i_n}} = \\
\sum a_i\phi(x_1)^{d_{i_1}}\ldots \phi(x_n)^{d_{i_n}} = \\
p(\phi(x_1), \ldots, \phi(x_n)) ϕ ( p ( x 1 , … , x n )) = ϕ ( ∑ a i x 1 d i 1 … x n d i n ) = ∑ ϕ ( a i ) ϕ ( x 1 ) d i 1 … ϕ ( x n ) d i n = ∑ a i ϕ ( x 1 ) d i 1 … ϕ ( x n ) d i n = p ( ϕ ( x 1 ) , … , ϕ ( x n ))
□ \square □
Proposition 2.9.2: F-automorphism is defined by its action on the generating set
∢ X ∈ S , ∣ X ∣ < ∞ F ( X ) / F ∈ F σ , τ ∈ Gal ( F ( X ) / F ) σ ∣ X = τ ∣ X σ = τ \begin{align*}
&\sphericalangle \\
&X \in \mathcal S, |X| < \infty \\
&F(X)/F \in \mathcal F \\
&\sigma, \tau \in \text{Gal}(F(X)/F) \\
&\sigma_{|X}=\tau_{|X} \\
\hline
\\
&\sigma = \tau
\end{align*} ∢ X ∈ S , ∣ X ∣ < ∞ F ( X ) / F ∈ F σ , τ ∈ Gal ( F ( X ) / F ) σ ∣ X = τ ∣ X σ = τ
Proof
Consider x ∈ F ( X ) x \in F(X) x ∈ F ( X ) . We know that ∃ α 1 , … , α n ∈ X \exists \alpha_1, \ldots,\alpha_n \in X ∃ α 1 , … , α n ∈ X such that x ∈ F ( α 1 , … , α n ) ⟹ x = f ( α 1 , … , α n ) / g ( α 1 , … , α n ) , f , g ∈ F [ x 1 , … , x n ] x \in F(\alpha_1, \ldots, \alpha_n) \implies x = f(\alpha_1, \ldots, \alpha_n)/g(\alpha_1, \ldots, \alpha_n), f, g \in F[x_1, \ldots, x_n] x ∈ F ( α 1 , … , α n ) ⟹ x = f ( α 1 , … , α n ) / g ( α 1 , … , α n ) , f , g ∈ F [ x 1 , … , x n ] .
σ ( x ) = σ ( f ( α 1 , … , α n ) g ( α 1 , … , α n ) ) = ( 2.9.1. c ) f ( σ ( α 1 ) , … , σ ( α n ) ) g ( σ ( α 1 ) , … , σ ( α n ) ) = σ ∣ X = τ ∣ X f ( τ ( α 1 ) , … , τ ( α n ) ) g ( τ ( α 1 ) , … , τ ( α n ) ) = ( 2.9.1. c ) τ ( x ) \sigma(x)=\sigma(\frac{f(\alpha_1, \ldots, \alpha_n)}{g(\alpha_1, \ldots, \alpha_n)}) \overset{(2.9.1.c)}= \frac{f(\sigma(\alpha_1), \ldots, \sigma(\alpha_n))}{g(\sigma(\alpha_1), \ldots, \sigma(\alpha_n))} \overset{\sigma_{|X}=\tau_{|X}}= \\
\frac{f(\tau(\alpha_1), \ldots, \tau(\alpha_n))}{g(\tau(\alpha_1), \ldots, \tau(\alpha_n))} \overset{(2.9.1.c)}=\tau(x) σ ( x ) = σ ( g ( α 1 , … , α n ) f ( α 1 , … , α n ) ) = ( 2.9.1. c ) g ( σ ( α 1 ) , … , σ ( α n )) f ( σ ( α 1 ) , … , σ ( α n )) = σ ∣ X = τ ∣ X g ( τ ( α 1 ) , … , τ ( α n )) f ( τ ( α 1 ) , … , τ ( α n )) = ( 2.9.1. c ) τ ( x )
□ \square □
Proposition 2.9.3: F-automorphism permutes the roots of minimal polynomials
∢ E / F ∈ F σ ∈ Gal ( E / F ) α ∈ F ‾ E p : = p o l F ( α ) R ( α ) : = { x ∈ E : p ( x ) = 0 } f ∈ F [ x ] , f ( α ) = 0 ⟹ f ( σ ( α ) ) = 0 σ ∣ R ( α ) : R ( α ) ↔ R ( α ) ∀ α ∈ E : p o l F ( α ) = p o l F ( σ ( α ) ) \begin{align*}
&\sphericalangle \\
&E/F \in \mathcal F \\
&\sigma \in \text{Gal}(E/F) \\
&\alpha \in \overline F_E \\
&p:=\mathfrak{pol}_F(\alpha) \\
&R(\alpha) := \{x \in E: p(x) = 0\} \\
\hline
\\
&\begin{align*}
&f \in F[x], f(\alpha) = 0 \implies f(\sigma(\alpha))=0 \hspace{1cm}\tag{a}\\
&\sigma_{|R(\alpha)}: R(\alpha) \leftrightarrow R(\alpha) \tag{b}\\
&\forall \alpha\in E: \mathfrak{pol}_F(\alpha) = \mathfrak{pol}_F(\sigma(\alpha)) \hspace{0.5cm} \tag{c}\\
\end{align*}
\end{align*} ∢ E / F ∈ F σ ∈ Gal ( E / F ) α ∈ F E p := pol F ( α ) R ( α ) := { x ∈ E : p ( x ) = 0 } f ∈ F [ x ] , f ( α ) = 0 ⟹ f ( σ ( α )) = 0 σ ∣ R ( α ) : R ( α ) ↔ R ( α ) ∀ α ∈ E : pol F ( α ) = pol F ( σ ( α )) ( a ) ( b ) ( c )
Proof
a.
∀ α ∈ R ( f ) : 0 = σ ( 0 ) = σ ( f ( α ) ) = ( 2.9.3. c ) f ( σ ( α ) )
\forall \alpha \in R(f): 0 = \sigma(0) = \sigma(f(\alpha))\overset{(2.9.3.c)}=f(\sigma(\alpha))
∀ α ∈ R ( f ) : 0 = σ ( 0 ) = σ ( f ( α )) = ( 2.9.3. c ) f ( σ ( α ))
b.
From ( a ) (a) ( a ) it follows that σ ∣ R ( α ) \sigma_{|R(\alpha)} σ ∣ R ( α ) is well-defined (indeed maps to R ( α ) R(\alpha) R ( α ) ). The rest follows from σ \sigma σ being bijective in E E E .
c.
∀ α ∈ E : p ( σ ( α ) ) = 0 ⟹ p o l F ( σ ( α ) ) ∣ p ⟹ p ∈ F [ x ] − p o l F ( σ ( α ) ) = p \forall \alpha \in E: p(\sigma(\alpha)) = 0 \implies \\
\mathfrak{pol}_F(\sigma(\alpha)) \mid p \overset{p \in F[x]^-}\implies \mathfrak{pol}_F(\sigma(\alpha)) = p ∀ α ∈ E : p ( σ ( α )) = 0 ⟹ pol F ( σ ( α )) ∣ p ⟹ p ∈ F [ x ] − pol F ( σ ( α )) = p
□ \square □
Example: Galois group for the complex numbers
We claim that Gal ( C / R ) = { id , σ } \text{Gal}(\mathbb C / \mathbb R)=\{\text{id}, \sigma\} Gal ( C / R ) = { id , σ } , where ∀ a , b ∈ R : id ( a + b i ) = a + b i , σ ( a + b i ) = a − b i \forall a, b \in R: \text{id}(a+bi)=a+bi, \sigma(a+bi) = a-bi ∀ a , b ∈ R : id ( a + bi ) = a + bi , σ ( a + bi ) = a − bi . Indeed C = R ( i ) \mathbb C = \mathbb R(i) C = R ( i ) . So by ( 2.9.2 ) (2.9.2) ( 2.9.2 ) an element of Gal ( C / R ) \text{Gal}(\mathbb C / \mathbb R) Gal ( C / R ) is fully defined by it's action on i i i . By ( 2.9.3 ) (2.9.3) ( 2.9.3 ) The only available actions on i i i are id : i ↦ i \text{id}: i \mapsto i id : i ↦ i and σ : i ↦ − i \sigma: i \mapsto -i σ : i ↦ − i .
Example: Galois group for Q ( 2 3 ) / Q \mathbb Q(\sqrt[3]2)/\mathbb Q Q ( 3 2 ) / Q
Consider minimal polynomial p ( x ) : = p o l ( 2 3 ) = x 3 − 2 p(x):= \mathfrak {pol}(\sqrt[3]2)=x^3-2 p ( x ) := pol ( 3 2 ) = x 3 − 2 . The roots of this polynomial are 2 3 , ω 2 3 , ω 2 2 3 \sqrt[3]2,\omega\sqrt[3]2, \omega^2\sqrt[3]2 3 2 , ω 3 2 , ω 2 3 2 , where ω = e 2 π i / 3 \omega = e^{2\pi i/3} ω = e 2 πi /3 . As in the example above any element of Galois group is defined by its action on 2 3 \sqrt[3]2 3 2 . But the only root of x 3 − 2 x^3-2 x 3 − 2 in Q ( 2 3 ) \mathbb Q(\sqrt[3]2) Q ( 3 2 ) is 2 3 \sqrt[3]2 3 2 . So Gal ( Q ( 2 3 ) / Q ) = { id } \text{Gal}(\mathbb Q(\sqrt[3]2)/\mathbb Q)=\{\text{id}\} Gal ( Q ( 3 2 ) / Q ) = { id } .
Example: Galois group for ( F 2 [ x ] / ⟨ x 2 + x + 1 ⟩ I ) / F 2 (\mathbb F_2[x] / \lang x^2+x+1 \rang_I)/\mathbb F_2 ( F 2 [ x ] / ⟨ x 2 + x + 1 ⟩ I ) / F 2
Consider F : = F 2 ≡ Z 2 F:=\mathbb F_2 \equiv \Z_2 F := F 2 ≡ Z 2 and polynomial p ( x ) : = x 2 + x + 1 p(x):=x^2+x+1 p ( x ) := x 2 + x + 1 . This polynomial is irreducible since it has no roots in F 2 \mathbb F_2 F 2 . So E : = F 2 [ x ] / ⟨ p ( x ) ⟩ I E:=\mathbb F_2[x] / \lang p(x) \rang_I E := F 2 [ x ] / ⟨ p ( x ) ⟩ I is a field. Let α \alpha α and β \beta β be the roots of p ( x ) p(x) p ( x ) in E E E . Then we have:
( x − α ) ( x − β ) = x 2 + x + 1 ⟹ − α − β = 1 ⟹ β = − 1 − α = 1 + α (x-\alpha)(x-\beta)=x^2+x+1 \implies -\alpha-\beta=1
\implies \\
\beta = -1-\alpha = 1 + \alpha ( x − α ) ( x − β ) = x 2 + x + 1 ⟹ − α − β = 1 ⟹ β = − 1 − α = 1 + α
So again we have E = F ( α ) E = F(\alpha) E = F ( α ) and Gal ( E / F ) = { id , σ } \text{Gal}(E/F)=\{\text{id}, \sigma\} Gal ( E / F ) = { id , σ } , σ ( α ) = 1 + α \sigma(\alpha) = 1+\alpha σ ( α ) = 1 + α
Example: Galois group for F 2 ( x ) / F 2 ( x 2 ) \mathbb F_2(x) / \mathbb F_2(x^2) F 2 ( x ) / F 2 ( x 2 )
Let F : = F 2 ( x 2 ) , E : = F 2 ( x ) F:=\mathbb F_2(x^2), E:=\mathbb F_2(x) F := F 2 ( x 2 ) , E := F 2 ( x ) . Then we have E / F E/F E / F and E = F ( x ) E=F(x) E = F ( x ) . We know that x ∈ F ‾ E , p o l F ( x ) = t 2 − x 2 x \in \overline F_E, \mathfrak {pol}_F(x) = t^2-x^2 x ∈ F E , pol F ( x ) = t 2 − x 2 . Note that in F 2 : t 2 − x 2 = t 2 − 2 t x + x 2 = ( t − x ) 2 \mathbb F_2: t^2-x^2=t^2-2tx+x^2=(t-x)^2 F 2 : t 2 − x 2 = t 2 − 2 t x + x 2 = ( t − x ) 2 , so x x x is the only root and Gal ( E / F ) = { id } \text{Gal}(E/F) = \{\text{id}\} Gal ( E / F ) = { id } .
Corrolary 2.9.4: Galois group of a finite extension is finite
∢ E / F ∈ F [ E : F ] < ∞ ∣ Gal ( E / F ) ∣ < ∞ \begin{align*}
&\sphericalangle \\
&E / F \in \mathcal F \\
&[E:F] < \infty
\\
\hline
\\
&|\text{Gal}(E/F)| < \infty
\end{align*} ∢ E / F ∈ F [ E : F ] < ∞ ∣ Gal ( E / F ) ∣ < ∞
Proof
Since [ E : F ] < ∞ [E:F]<\infty [ E : F ] < ∞ , we can write E = F ( α 1 , … , α n ) , α i ∈ F ‾ E E=F(\alpha_1, \ldots, \alpha_n), \alpha_i \in \overline F_E E = F ( α 1 , … , α n ) , α i ∈ F E . From ( 2.9.3 ) (2.9.3) ( 2.9.3 ) we know that for each alpha there's only finite possibilites for mapping into some element of E E E (the image of α i \alpha_i α i is limited to the set of roots of p o l F ( α ) \mathfrak{pol}_F(\alpha) pol F ( α ) which is finite). On the other hand, from ( 2.9.2 ) (2.9.2) ( 2.9.2 ) we know that σ \sigma σ is defined by the image of the set { α 1 , … , α n } \{\alpha_1, \ldots, \alpha_n\} { α 1 , … , α n } .
□ \square □
So far we converted field extensions to Galois group, a subset of all automorphisms. Now we will make the reverse conversion - from automorphism to a subfield of a field:
def: Fixed subfield
∢ E ∈ F S ⊆ Aut F ( E ) Fix S ( E ) : = { x ∈ E : ∀ σ ∈ S : σ ( x ) = x } \begin{align*}
&\sphericalangle \\
& E \in \mathcal F \\
&S \subseteq \text{Aut}_F(E)
\\
\hline
\\
&\text{Fix}_S(E):=\{x \in E: \forall \sigma \in S: \sigma(x)=x\}
\end{align*} ∢ E ∈ F S ⊆ Aut F ( E ) Fix S ( E ) := { x ∈ E : ∀ σ ∈ S : σ ( x ) = x }
It's easy to check that it is indeed a subfield of E E E
Proposition 2.9.5: Fixed fields and galois groups dual properties
∢ E ∈ F F 1 ⊆ F F 2 ⊆ F E ⟹ Gal ( E / F 1 ) ⊇ Gal ( E / F 2 ) S 1 ⊆ S 2 ⊆ Aut ( E ) ⟹ Fix S 1 ( E ) ⊇ Fix S 2 ( E ) E / F ⟹ F ⊆ Fix Gal(E/F) ( E ) S ⊆ Aut ( E ) ⟹ S ⊆ Gal ( E / Fix S ( E ) ) E / F , ∃ S ⊆ Aut ( E ) : F = Fix S ( E ) ⟹ F = Fix Gal ( E / F ) ( E ) S ⊆ Aut ( E ) , ∃ F ⊆ F E : S = Gal ( E / F ) ⟹ S = Gal ( E / Fix S ( E ) ) \begin{align*}
&\sphericalangle \\
&E \in \mathcal F
\\
\hline
\\
&\begin{align*}
&F_1 \subseteq_F F_2 \subseteq_F E \implies \text{Gal}(E/F_1) \supseteq \text{Gal}(E/F_2) \tag{a}\\
&S_1 \subseteq S_2 \subseteq \text{Aut}(E) \implies \text{Fix}_{S_1}(E) \supseteq \text{Fix}_{S_2}(E) \tag{b} \\
&E/F \implies F \subseteq \text{Fix}_{\text{Gal(E/F)}}(E) \tag{c}\\
&S \subseteq \text{Aut}(E) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \tag{d} \\
&E/F, \exists S \subseteq \text{Aut}(E): F = \text{Fix}_S(E) \implies F = \text{Fix}_{\text{Gal}(E/F)}(E) \hspace{0.5cm} \tag{e}\\
&S \subseteq \text{Aut}(E), \exists F \subseteq_F E : S = \text{Gal}(E/F) \implies S = \text{Gal}(E/\text{Fix}_S(E)) \hspace{0.1cm} \tag{f}\\
\end{align*}
\end{align*} ∢ E ∈ F F 1 ⊆ F F 2 ⊆ F E ⟹ Gal ( E / F 1 ) ⊇ Gal ( E / F 2 ) S 1 ⊆ S 2 ⊆ Aut ( E ) ⟹ Fix S 1 ( E ) ⊇ Fix S 2 ( E ) E / F ⟹ F ⊆ Fix Gal(E/F) ( E ) S ⊆ Aut ( E ) ⟹ S ⊆ Gal ( E / Fix S ( E )) E / F , ∃ S ⊆ Aut ( E ) : F = Fix S ( E ) ⟹ F = Fix Gal ( E / F ) ( E ) S ⊆ Aut ( E ) , ∃ F ⊆ F E : S = Gal ( E / F ) ⟹ S = Gal ( E / Fix S ( E )) ( a ) ( b ) ( c ) ( d ) ( e ) ( f )
Proof
a., b.
Follows directly from the definition
c.
Gal ( E / F ) \text{Gal}(E/F) Gal ( E / F ) definitely fixes F F F but can fix more elements, that's why F ⊆ Fix Gal ( E / F ) ( E ) F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E) F ⊆ Fix Gal ( E / F ) ( E )
d.
Each element of Fix S ( E ) \text{Fix}_S(E) Fix S ( E ) is fixed by S S S but can be fixed by other elements of Aut ( E ) \text{Aut}(E) Aut ( E ) so S ⊆ Gal ( E / Fix S ( E ) ) S \subseteq \text{Gal}(E / \text{Fix}_S(E)) S ⊆ Gal ( E / Fix S ( E ))
e.
( c ) ⟹ F ⊆ Fix Gal ( E / F ) ( E ) ( d ) ⟹ S ⊆ Gal ( E / Fix S ( E ) ) ⟹ ( b ) F = Fix S ( E ) ⊇ Fix Gal ( E / Fix S ( E ) ) ( E ) = Fix Gal ( E / F ) ( E ) (c) \implies F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E) \\
(d) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \overset{(b)}\implies \\
F=\text{Fix}_S(E) \supseteq \text{Fix}_{\text{Gal}(E / \text{Fix}_S(E))}(E)=\text{Fix}_{\text{Gal}(E / F)}(E) \\ ( c ) ⟹ F ⊆ Fix Gal ( E / F ) ( E ) ( d ) ⟹ S ⊆ Gal ( E / Fix S ( E )) ⟹ ( b ) F = Fix S ( E ) ⊇ Fix Gal ( E / Fix S ( E )) ( E ) = Fix Gal ( E / F ) ( E )
f.
( d ) ⟹ S ⊆ Gal ( E / Fix S ( E ) ) ( c ) ⟹ F ⊆ Fix Gal ( E / F ) ( E ) ⟹ ( a ) S = Gal ( E / F ) ⊇ Gal ( E / Fix Gal ( E / F ) ( E ) ) = Gal ( E / Fix S ( E ) ) (d) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \\
(c) \implies F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E) \overset{(a)}\implies \\ S=\text{Gal}(E/F) \supseteq \text{Gal}(E/\text{Fix}_{\text{Gal}(E/F)}(E)) = \text{Gal}(E/\text{Fix}_S(E)) ( d ) ⟹ S ⊆ Gal ( E / Fix S ( E )) ( c ) ⟹ F ⊆ Fix Gal ( E / F ) ( E ) ⟹ ( a ) S = Gal ( E / F ) ⊇ Gal ( E / Fix Gal ( E / F ) ( E )) = Gal ( E / Fix S ( E ))
□ \square □
Normal extensions
def: Normal extension
∢ E / F ∈ F ∃ P ⊆ F [ x ] ∖ F : E = F ( ∥ P ) E / ⊲ F − E is a normal extension of F \begin{align*}
&\sphericalangle \\
&E/F \in \mathcal F \\
&\exists P \subseteq F[x] \setminus F: E = F(\parallel P)
\\
\hline
\\
&E/_{\lhd}F - E \text{ is a normal extension of }F
\end{align*} ∢ E / F ∈ F ∃ P ⊆ F [ x ] ∖ F : E = F ( ∥ P ) E / ⊲ F − E is a normal extension of F
Proposition 2.9.6: Normal extension criteria
∢ E / A F ∈ F The following are equivalent: E / ⊲ F τ : E ⇝ ∣ F E ‾ ⟹ τ ( E ) = E N / E / L / F ∈ F , σ : L ⇝ ∣ F N ⟹ σ ( L ) ⊆ E , ∃ τ ∈ Gal ( E / F ) , τ ∣ L = σ p ∈ F [ x ] − , ∃ α ∈ E : p ( α ) = 0 ⟹ p ∥ E \begin{align*}
&\sphericalangle \\
&E/_AF \in \mathcal F \\
\hline
\\
&\text{The following are equivalent:} \\
&\begin{align*}
&E/_{\lhd}F \hspace{0.5cm} \tag{a}\\
&\tau: E \rightsquigarrow_{|F} \overline E \implies \tau(E)=E \hspace{0.5cm} \tag{b}\\
&N/E/L/F \in \mathcal F, \sigma: L \rightsquigarrow_{|F} N \implies \sigma(L) \subseteq E, \exists \tau \in \text{Gal}(E/F), \tau|_L=\sigma \hspace{0.5cm} \tag{c}\\
& p \in F[x]^{-}, \exists \alpha \in E: p(\alpha) = 0 \implies p \parallel E \hspace{0.5cm} \tag{d}\\
\end{align*}
\end{align*} ∢ E / A F ∈ F The following are equivalent: E / ⊲ F τ : E ⇝ ∣ F E ⟹ τ ( E ) = E N / E / L / F ∈ F , σ : L ⇝ ∣ F N ⟹ σ ( L ) ⊆ E , ∃ τ ∈ Gal ( E / F ) , τ ∣ L = σ p ∈ F [ x ] − , ∃ α ∈ E : p ( α ) = 0 ⟹ p ∥ E ( a ) ( b ) ( c ) ( d )