Skip to main content

2.9 Galois theory

Galois group

def: Mapping restrictions

f:XYZXfZ:ZY,xf(x)fZrestriction of f to Z\begin{align*} &\sphericalangle \\ &f: X \to Y \\ &Z \subseteq X\\ &f_{|Z}: Z \to Y, x \mapsto f(x) \\ \hline \\ &f_{|Z} - \text{restriction of } f \text{ to }Z \end{align*}

def: Endomorphism

ϕ:EFEϕEndF(E),ϕ endomorphism on E\begin{align*} &\sphericalangle \\ &\phi: E \rightsquigarrow_F E \\ \hline \\ &\phi \in \text{End}_F(E), \phi - \text{ endomorphism on } E \end{align*}

def: Automorphism

ϕ:EFEϕAutF(E),ϕ automorphism on E\begin{align*} &\sphericalangle \\ &\phi: E \cong_F E \\ \hline \\ &\phi \in \text{Aut}_F(E), \phi - \text{ automorphism on } E \end{align*}

def: F-homomorphism

E1/F,E2/Fextension fieldϕ:E1FE2ϕF:xxϕ:E1FE2F-homomorphism\begin{align*} &\sphericalangle \\ &E_1/F, E_2/F - \text{extension field} \\ &\phi: E_1 \rightsquigarrow_F E_2 \\ &\phi_{|F}: x \mapsto x \\ \hline \\ &\phi: E_1 \rightsquigarrow_{|F} E_2 - F\text{-homomorphism} \end{align*}

def: F-isomorphism, F-automorphism

E1/F,E2/FFϕ:E1FE2ϕ:E1E2ϕ:E1FE2F-isomopshismE1=E2    ϕF-automorphism\begin{align*} &\sphericalangle \\ &E_1/F, E_2/F \in \mathcal F \\ &\phi: E_1 \rightsquigarrow_{|F} E_2 \\ &\phi: E_1 \leftrightarrow E_2 \\ \hline \\ &\phi: E_1 \cong_{|F} E_2 - F\text{-isomopshism} \\ & E_1 = E_2 \implies \phi - F\text{-automorphism} \end{align*}

def: Galois group

E/FFGal(E/F):={σ:EFE}Galois group of E/F\begin{align*} &\sphericalangle \\ &E / F \in \mathcal F \\ \hline \\ &\text{Gal}(E/F):=\{\sigma: E \cong_{|F}E\} - \text{Galois group of } E/F \end{align*}
note

It's pretty easy to show that Galois group is indeed a group. A composition of automorphism is still automorphism and the field FF is still fixed. Associativity is obvious as well the existence of the neutral element (identity automorphism) and inverse σ1\sigma^{-1}

Proposition 2.9.1: F-homomorphism properties

E1/F,E2/FFϕ:E1FE2E1MFE2E=E1=E2,[E:F]<    ϕ:EMFEpF[x1,,xn]:ϕ(p(y1,,yn))=p(ϕ(y1),,ϕ(yn))\begin{align*} &\sphericalangle \\ &E_1/F, E_2/F \in \mathcal F \\ &\phi: E_1 \rightsquigarrow_{|F} E_2 \\ \hline \\ &\begin{align*} & E_1 \rightsquigarrow_{M_F} E_2 \tag{a}\\ & E=E_1=E_2, [E: F] < \infty \implies \phi: E \cong_{M_F} E \tag{b}\\ & \forall p \in F[x_1, \ldots, x_n]: \phi(p(y_1, \ldots, y_n))=p(\phi(y_1), \ldots, \phi(y_n)) \hspace{0.5cm}\tag{c} \end{align*} \end{align*}

Proof

a.

αF,xE1:ϕ(αx)=ϕ(α)ϕ(x)=αϕ(x)\forall \alpha \in F, x \in E_1: \phi(\alpha x)=\phi(\alpha)\phi(x)=\alpha \phi(x)

b.

By (2.4.20)(2.4.20) we know that kerϕ={0}\ker \phi = \{0\}. So dimF(E)=dimF(ϕ(E))\dim_F(E)=\dim_F(\phi(E)). Then ϕ(E)E\phi(E) \subseteq E implies E=ϕ(E)E = \phi(E).

c.

ϕ(p(x1,,xn))=ϕ(aix1di1xndin)=ϕ(ai)ϕ(x1)di1ϕ(xn)din=aiϕ(x1)di1ϕ(xn)din=p(ϕ(x1),,ϕ(xn))\phi(p(x_1, \ldots, x_n))=\phi(\sum a_ix_1^{d_{i_1}}\ldots x_n^{d_{i_n}}) = \\ \sum \phi(a_i)\phi(x_1)^{d_{i_1}}\ldots \phi(x_n)^{d_{i_n}} = \\ \sum a_i\phi(x_1)^{d_{i_1}}\ldots \phi(x_n)^{d_{i_n}} = \\ p(\phi(x_1), \ldots, \phi(x_n))

\square

Proposition 2.9.2: F-automorphism is defined by its action on the generating set

XS,X<F(X)/FFσ,τGal(F(X)/F)σX=τXσ=τ\begin{align*} &\sphericalangle \\ &X \in \mathcal S, |X| < \infty \\ &F(X)/F \in \mathcal F \\ &\sigma, \tau \in \text{Gal}(F(X)/F) \\ &\sigma_{|X}=\tau_{|X} \\ \hline \\ &\sigma = \tau \end{align*}

Proof

Consider xF(X)x \in F(X). We know that α1,,αnX\exists \alpha_1, \ldots,\alpha_n \in X such that xF(α1,,αn)    x=f(α1,,αn)/g(α1,,αn),f,gF[x1,,xn]x \in F(\alpha_1, \ldots, \alpha_n) \implies x = f(\alpha_1, \ldots, \alpha_n)/g(\alpha_1, \ldots, \alpha_n), f, g \in F[x_1, \ldots, x_n].

σ(x)=σ(f(α1,,αn)g(α1,,αn))=(2.9.1.c)f(σ(α1),,σ(αn))g(σ(α1),,σ(αn))=σX=τXf(τ(α1),,τ(αn))g(τ(α1),,τ(αn))=(2.9.1.c)τ(x)\sigma(x)=\sigma(\frac{f(\alpha_1, \ldots, \alpha_n)}{g(\alpha_1, \ldots, \alpha_n)}) \overset{(2.9.1.c)}= \frac{f(\sigma(\alpha_1), \ldots, \sigma(\alpha_n))}{g(\sigma(\alpha_1), \ldots, \sigma(\alpha_n))} \overset{\sigma_{|X}=\tau_{|X}}= \\ \frac{f(\tau(\alpha_1), \ldots, \tau(\alpha_n))}{g(\tau(\alpha_1), \ldots, \tau(\alpha_n))} \overset{(2.9.1.c)}=\tau(x)

\square

Proposition 2.9.3: F-automorphism permutes the roots of minimal polynomials

E/FFσGal(E/F)αFEp:=polF(α)R(α):={xE:p(x)=0}fF[x],f(α)=0    f(σ(α))=0σR(α):R(α)R(α)αE:polF(α)=polF(σ(α))\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &\sigma \in \text{Gal}(E/F) \\ &\alpha \in \overline F_E \\ &p:=\mathfrak{pol}_F(\alpha) \\ &R(\alpha) := \{x \in E: p(x) = 0\} \\ \hline \\ &\begin{align*} &f \in F[x], f(\alpha) = 0 \implies f(\sigma(\alpha))=0 \hspace{1cm}\tag{a}\\ &\sigma_{|R(\alpha)}: R(\alpha) \leftrightarrow R(\alpha) \tag{b}\\ &\forall \alpha\in E: \mathfrak{pol}_F(\alpha) = \mathfrak{pol}_F(\sigma(\alpha)) \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

αR(f):0=σ(0)=σ(f(α))=(2.9.3.c)f(σ(α)) \forall \alpha \in R(f): 0 = \sigma(0) = \sigma(f(\alpha))\overset{(2.9.3.c)}=f(\sigma(\alpha))

b.

From (a)(a) it follows that σR(α)\sigma_{|R(\alpha)} is well-defined (indeed maps to R(α)R(\alpha)). The rest follows from σ\sigma being bijective in EE.

c.

αE:p(σ(α))=0    polF(σ(α))p    pF[x]polF(σ(α))=p\forall \alpha \in E: p(\sigma(\alpha)) = 0 \implies \\ \mathfrak{pol}_F(\sigma(\alpha)) \mid p \overset{p \in F[x]^-}\implies \mathfrak{pol}_F(\sigma(\alpha)) = p

\square

Example: Galois group for the complex numbers

We claim that Gal(C/R)={id,σ}\text{Gal}(\mathbb C / \mathbb R)=\{\text{id}, \sigma\}, where a,bR:id(a+bi)=a+bi,σ(a+bi)=abi\forall a, b \in R: \text{id}(a+bi)=a+bi, \sigma(a+bi) = a-bi. Indeed C=R(i)\mathbb C = \mathbb R(i). So by (2.9.2)(2.9.2) an element of Gal(C/R)\text{Gal}(\mathbb C / \mathbb R) is fully defined by it's action on ii. By (2.9.3)(2.9.3) The only available actions on ii are id:ii\text{id}: i \mapsto i and σ:ii\sigma: i \mapsto -i.

Example: Galois group for Q(23)/Q\mathbb Q(\sqrt[3]2)/\mathbb Q

Consider minimal polynomial p(x):=pol(23)=x32p(x):= \mathfrak {pol}(\sqrt[3]2)=x^3-2. The roots of this polynomial are 23,ω23,ω223\sqrt[3]2,\omega\sqrt[3]2, \omega^2\sqrt[3]2, where ω=e2πi/3\omega = e^{2\pi i/3}. As in the example above any element of Galois group is defined by its action on 23\sqrt[3]2. But the only root of x32x^3-2 in Q(23)\mathbb Q(\sqrt[3]2) is 23\sqrt[3]2. So Gal(Q(23)/Q)={id}\text{Gal}(\mathbb Q(\sqrt[3]2)/\mathbb Q)=\{\text{id}\}.

Example: Galois group for (F2[x]/x2+x+1I)/F2(\mathbb F_2[x] / \lang x^2+x+1 \rang_I)/\mathbb F_2

Consider F:=F2Z2F:=\mathbb F_2 \equiv \Z_2 and polynomial p(x):=x2+x+1p(x):=x^2+x+1. This polynomial is irreducible since it has no roots in F2\mathbb F_2. So E:=F2[x]/p(x)IE:=\mathbb F_2[x] / \lang p(x) \rang_I is a field. Let α\alpha and β\beta be the roots of p(x)p(x) in EE. Then we have:

(xα)(xβ)=x2+x+1    αβ=1    β=1α=1+α(x-\alpha)(x-\beta)=x^2+x+1 \implies -\alpha-\beta=1 \implies \\ \beta = -1-\alpha = 1 + \alpha

So again we have E=F(α)E = F(\alpha) and Gal(E/F)={id,σ}\text{Gal}(E/F)=\{\text{id}, \sigma\}, σ(α)=1+α\sigma(\alpha) = 1+\alpha

Example: Galois group for F2(x)/F2(x2)\mathbb F_2(x) / \mathbb F_2(x^2)

Let F:=F2(x2),E:=F2(x)F:=\mathbb F_2(x^2), E:=\mathbb F_2(x). Then we have E/FE/F and E=F(x)E=F(x). We know that xFE,polF(x)=t2x2x \in \overline F_E, \mathfrak {pol}_F(x) = t^2-x^2. Note that in F2:t2x2=t22tx+x2=(tx)2\mathbb F_2: t^2-x^2=t^2-2tx+x^2=(t-x)^2, so xx is the only root and Gal(E/F)={id}\text{Gal}(E/F) = \{\text{id}\}.

Corrolary 2.9.4: Galois group of a finite extension is finite

E/FF[E:F]<Gal(E/F)<\begin{align*} &\sphericalangle \\ &E / F \in \mathcal F \\ &[E:F] < \infty \\ \hline \\ &|\text{Gal}(E/F)| < \infty \end{align*}

Proof

Since [E:F]<[E:F]<\infty, we can write E=F(α1,,αn),αiFEE=F(\alpha_1, \ldots, \alpha_n), \alpha_i \in \overline F_E. From (2.9.3)(2.9.3) we know that for each alpha there's only finite possibilites for mapping into some element of EE (the image of αi\alpha_i is limited to the set of roots of polF(α)\mathfrak{pol}_F(\alpha) which is finite). On the other hand, from (2.9.2)(2.9.2) we know that σ\sigma is defined by the image of the set {α1,,αn}\{\alpha_1, \ldots, \alpha_n\}.

\square

So far we converted field extensions to Galois group, a subset of all automorphisms. Now we will make the reverse conversion - from automorphism to a subfield of a field:

def: Fixed subfield

EFSAutF(E)FixS(E):={xE:σS:σ(x)=x}\begin{align*} &\sphericalangle \\ & E \in \mathcal F \\ &S \subseteq \text{Aut}_F(E) \\ \hline \\ &\text{Fix}_S(E):=\{x \in E: \forall \sigma \in S: \sigma(x)=x\} \end{align*}
note

It's easy to check that it is indeed a subfield of EE

Proposition 2.9.5: Fixed fields and galois groups dual properties

EFF1FF2FE    Gal(E/F1)Gal(E/F2)S1S2Aut(E)    FixS1(E)FixS2(E)E/F    FFixGal(E/F)(E)SAut(E)    SGal(E/FixS(E))E/F,SAut(E):F=FixS(E)    F=FixGal(E/F)(E)SAut(E),FFE:S=Gal(E/F)    S=Gal(E/FixS(E))\begin{align*} &\sphericalangle \\ &E \in \mathcal F \\ \hline \\ &\begin{align*} &F_1 \subseteq_F F_2 \subseteq_F E \implies \text{Gal}(E/F_1) \supseteq \text{Gal}(E/F_2) \tag{a}\\ &S_1 \subseteq S_2 \subseteq \text{Aut}(E) \implies \text{Fix}_{S_1}(E) \supseteq \text{Fix}_{S_2}(E) \tag{b} \\ &E/F \implies F \subseteq \text{Fix}_{\text{Gal(E/F)}}(E) \tag{c}\\ &S \subseteq \text{Aut}(E) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \tag{d} \\ &E/F, \exists S \subseteq \text{Aut}(E): F = \text{Fix}_S(E) \implies F = \text{Fix}_{\text{Gal}(E/F)}(E) \hspace{0.5cm} \tag{e}\\ &S \subseteq \text{Aut}(E), \exists F \subseteq_F E : S = \text{Gal}(E/F) \implies S = \text{Gal}(E/\text{Fix}_S(E)) \hspace{0.1cm} \tag{f}\\ \end{align*} \end{align*}

Proof

a., b.

Follows directly from the definition

c.

Gal(E/F)\text{Gal}(E/F) definitely fixes FF but can fix more elements, that's why FFixGal(E/F)(E)F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E)

d.

Each element of FixS(E)\text{Fix}_S(E) is fixed by SS but can be fixed by other elements of Aut(E)\text{Aut}(E) so SGal(E/FixS(E))S \subseteq \text{Gal}(E / \text{Fix}_S(E))

e.

(c)    FFixGal(E/F)(E)(d)    SGal(E/FixS(E))    (b)F=FixS(E)FixGal(E/FixS(E))(E)=FixGal(E/F)(E)(c) \implies F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E) \\ (d) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \overset{(b)}\implies \\ F=\text{Fix}_S(E) \supseteq \text{Fix}_{\text{Gal}(E / \text{Fix}_S(E))}(E)=\text{Fix}_{\text{Gal}(E / F)}(E) \\

f.

(d)    SGal(E/FixS(E))(c)    FFixGal(E/F)(E)    (a)S=Gal(E/F)Gal(E/FixGal(E/F)(E))=Gal(E/FixS(E))(d) \implies S \subseteq \text{Gal}(E / \text{Fix}_S(E)) \\ (c) \implies F \subseteq \text{Fix}_{\text{Gal}(E/F)}(E) \overset{(a)}\implies \\ S=\text{Gal}(E/F) \supseteq \text{Gal}(E/\text{Fix}_{\text{Gal}(E/F)}(E)) = \text{Gal}(E/\text{Fix}_S(E))

\square

Normal extensions

def: Normal extension

E/FFPF[x]F:E=F(P)E/FE is a normal extension of F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &\exists P \subseteq F[x] \setminus F: E = F(\parallel P) \\ \hline \\ &E/_{\lhd}F - E \text{ is a normal extension of }F \end{align*}

Proposition 2.9.6: Normal extension criteria

E/AFFThe following are equivalent:E/Fτ:EFE    τ(E)=EN/E/L/FF,σ:LFN    σ(L)E,τGal(E/F),τL=σpF[x],αE:p(α)=0    pE\begin{align*} &\sphericalangle \\ &E/_AF \in \mathcal F \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} &E/_{\lhd}F \hspace{0.5cm} \tag{a}\\ &\tau: E \rightsquigarrow_{|F} \overline E \implies \tau(E)=E \hspace{0.5cm} \tag{b}\\ &N/E/L/F \in \mathcal F, \sigma: L \rightsquigarrow_{|F} N \implies \sigma(L) \subseteq E, \exists \tau \in \text{Gal}(E/F), \tau|_L=\sigma \hspace{0.5cm} \tag{c}\\ & p \in F[x]^{-}, \exists \alpha \in E: p(\alpha) = 0 \implies p \parallel E \hspace{0.5cm} \tag{d}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Since E/FE/_{\lhd}F there exists PF[x]:E=F(P)P \subseteq F[x]:E = F(\parallel P). Now in the context of (2.8.13)(2.8.13) consider F1=F2=F,E1=E,E2=ϕ(E),σ=idF_1=F_2=F, E_1 = E, E_2 = \phi(E), \sigma=\text{id}, we have τ(E)=F(Pσ)=F(P)=E\tau(E)=F(\parallel P^{\sigma})=F(\parallel P)=E.

(b)    (c)(b) \implies (c)

normal-extension-1

normal-extension-1

First note that by (2.4.20)(2.4.20) σ\sigma is injective so

Lσσ(L) L \overset{\sigma}\cong \sigma(L)

Next, obviously LE,E/AF    L/AFL \subseteq E, E/_AF \implies L/_AF. Since σ\sigma is FF-homomorphism this implies σ(L)/AF\sigma(L)/_AF. So we have E/AF,L/AF,σ(L)/AFE/_AF, L/_AF, \sigma(L)/_AF, it means that

E=L=σ(L)=F=F(F[x]F) \overline E = \overline L= \overline {\sigma(L)}=\overline F = F(\parallel F[x] \setminus F)

Now consider under (2.8.11)(2.8.11) F1:=L,F2:=σ(L),E1=E2=EF_1:=L, F_2:=\sigma(L), E_1=E_2 = \overline E, there exists ρ:EFE\rho: \overline E \cong_F \overline E, ρL=σ\rho|_L=\sigma. Note that

ρF=(ρL)F=σF=id\rho|_F = (\rho|_L)|_F = \sigma|_F=\text{id}

Now define τ:=ρE\tau:=\rho|_E. Note that σ=ρL=(ρE)L=τL\sigma=\rho|_L=(\rho|_E)|_L=\tau|_L. By (b)(b) we have τ(E)=E\tau(E)=E so σ(L)=τ(L)τ(E)=E\sigma(L)=\tau(L)\subseteq \tau(E)=E.

Finally we have τ:EFE\tau: E \rightsquigarrow_F E, τF=(ρE)F=ρF=id\tau|_F=(\rho|_E)|_F = \rho|_F=\text{id}, so τGal(E/F)\tau \in \text{Gal}(E/F)

(c)    (d)(c) \implies (d)

Let pF[x],αE:p(α)=0p \in F[x]^{-}, \alpha \in E: p(\alpha) = 0. Assume L:=F(α),N:=EL:=F(\alpha), N:=\overline E.

Consider βE:p(β)=0\beta \in \overline E: p(\beta) = 0 and σ:F(α)FE:αβ\sigma: F(\alpha) \rightsquigarrow_{|F} \overline E: \alpha \mapsto \beta. By (c)(c) we have σ(F(α))E    βE\sigma(F(\alpha))\subseteq E \implies \beta \in E. Since β\beta was arbitrary it means pEp \parallel E.

(d)    (a)(d) \implies (a) We know that forall αE:polF(α)E\alpha \in E: \mathfrak {pol}_F(\alpha) \parallel E. So for P:={polF(α),αE}P:=\{\mathfrak {pol}_F(\alpha), \alpha \in E\} we have E=F(P)E = F(\parallel P).

\square

Example: Normal extension

C/R\mathbb C / \mathbb R is normal since C=R(x2+1)\mathbb C=\mathbb R(\parallel x^2+1).

Example: Not normal extension

Q(23)/Q\mathbb Q(\sqrt[3]2)/\mathbb Q is not normal since polQ(23)=x32\mathfrak {pol}_{\mathbb Q}(\sqrt[3]2) = x^3-2 and Q(x32)=Q(23,3)\mathbb Q(\parallel x^3-2)=\mathbb Q(\sqrt[3]2, \sqrt{-3}).

Separable extensions

def: Multiplicity of root

FFpF[x]αF(p)(xα)mp,(xα)m+1pordαp:=m, root α has multiplicity m\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p \in F[x] \\ &\alpha \in F(\parallel p) \\ &(x-\alpha)^m \mid p, (x-\alpha)^{m+1} \nmid p \\ \hline \\ &\text{ord}_{\alpha}p:=m, \text{ root } \alpha \text{ has multiplicity } m \end{align*}

Example: Root multiplicity of 1

x32x^3 - 2 has ord23(x32)=1\text{ord}_{\sqrt[3]2}(x^3-2)=1 in Q\mathbb Q. Because x23(x32)x-\sqrt[3]2 \mid (x^3-2) and (x23)2(x32)(x-\sqrt[3]2)^2 \nmid (x^3-2)

Example: Root multiplicity of 2

In F2(x)/F2(x2)\mathbb F_2(x)/\mathbb F_2(x^2) we have ordxt2x2=2\text{ord}_x t^2-x^2 = 2 because t2x2=(tx)2t^2-x^2=(t-x)^2

def: Separable polynomial

FFpF[x]αF(p),p(α)=0    ordαp=1pF[x]\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p \in F[x] \\ &\forall \alpha \in F(\parallel p), p(\alpha) = 0 \implies \text{ord}_{\alpha}p=1 \\ \hline \\ &p \in F_\boxminus[x] \end{align*}

def: Separable element

E/FFαEpol(α)F[x]αF\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ & \alpha \in E \\ &\mathfrak {pol}(\alpha) \in F_{\boxminus}[x] \\ \hline \\ &\alpha \in F_{\boxminus} \end{align*}

def: Separable extension

E/AFFαE:αFE/F,E separable extension of F\begin{align*} &\sphericalangle \\ &E/_AF \in \mathcal F \\ &\forall \alpha \in E: \alpha \in F_{\boxminus} \\ \hline \\ &E/_{\boxminus}F, E - \text{ separable extension of } F \end{align*}

Example: Separable extension

Q(2)/Q\mathbb Q(\sqrt 2)/\mathbb Q is separable since polQ(2)=x22=(x2)(x+2)\mathfrak{pol}_{\mathbb Q}(\sqrt 2)= x^2-2 = (x-\sqrt 2)(x+\sqrt 2)

Example: Non-separable extension

F2(x)/F2(x2)\mathbb F_2(x)/\mathbb F_2(x^2) is not separable as xx has a minimal polynomial t2x2t^2-x^2, and xx is a root of multiplicity 2 in this polynomial.

def: Polynomial derivative

FFpF[x],p=a0+a1x++anxnp(x):=a1+2a2x+nanxn1\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p \in F[x], p = a_0+a_1x+ \ldots + a_nx^n \\ \hline \\ &p'(x):=a_1 + 2a_2x+\ldots na_nx^{n-1} \end{align*}
note

We can assume that degp=degp1\deg p' = \deg p - 1. However that's only true if char F=0\text{char } F=0. If, for example, char F=n\text{char } F = n and p(x)=xnp(x)=x^n then p(x)=nxn1=0p'(x)=nx^{n-1}= 0.

Proposition 2.9.7: Derivative properties

FFp,qF[x]a,bF:(ap(x)+bq(x))=ap(x)+bq(x)(p(x)q(x))=p(x)q(x)+p(x)q(x)(p(q(x)))=p(q(x))q(x)\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p, q \in F[x] \\ \hline \\ &\begin{align*} & \forall a, b \in F: (ap(x)+bq(x))' = ap'(x) + bq'(x) \hspace{0.5cm} \tag{a}\\ & (p(x)q(x))' = p'(x)q(x) + p(x)q'(x) \hspace{0.5cm} \tag{b}\\ & (p(q(x)))' = p'(q(x))q'(x) \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

Verified directly and left as an exercise.

\square

Proposition 2.9.8: Polynomial separability criterion

FFpF[x]FpF[x]    gcd(p,p)=1\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &p \in F[x] \setminus F \\ \hline \\ &p \in F_{\boxminus}[x] \iff \gcd(p, p')=1 \end{align*}

Proof

Take some E/FE/F. Let's prove that

gcd(p,p)=1 (in F)    gcd(p,p)=1 (in E)\gcd(p, p')=1 \text{ (in F)} \iff \gcd(p, p')=1 \text{ (in E)}

If gcd(p,p)=1\gcd(p, p')=1 in FF then by (2.1.6)(2.1.6) (which is true for any GCD domain and F[x]F[x] is a GCD domain), we have g,hF[x]:pg+ph=1\exists g, h \in F[x]: pg+p'h = 1. This is also an equation in EE so pg+ph=1    gcd(p,p)=1pg+p'h = 1 \implies \gcd(p, p')=1 in EE.

Conversely assume gcd(p,p)=1\gcd(p, p')=1 in EE. Denote d:=gcd(p,p)d:=\gcd(p, p') in FF. Then dp,dpd \mid p, d \mid p' in FF. But this is also true in EE. This implies that dgcd(p,p)d \mid \gcd(p, p') in EE. So d1    d=1d \mid 1 \implies d = 1.

Now we fix for the rest of the proof E:=F({p,p})E:=F(\parallel \{p, p'\}). Let's prove

pF[x]    αE:p(α)=p(α)=0p \in F_{\boxminus}[x] \iff \nexists \alpha \in E: p(\alpha)=p'(\alpha)=0

If αE:p(α)=p(α)=0\exists \alpha \in E: p(\alpha)=p'(\alpha)=0 then p(x)=(xα)mq(x),q(α)0,p(x)=m(xα)m1q(x)+(xα)mq(x)=(xα)m1(mq(x)+(xα)q(x))p(x)=(x-\alpha)^mq(x), q(\alpha)\ne 0, p'(x)=m(x-\alpha)^{m-1}q(x)+(x-\alpha)^{m}q'(x)=(x-\alpha)^{m-1}(mq(x)+(x-\alpha)q'(x)). Now if m=1m=1 then p(α)=q(α)0p'(\alpha)=q(\alpha)\ne0 which is a contraction. So m>1m>1 and pF[x]p \notin F_{\boxminus}[x]. Conversely if pF[x]p \notin F_{\boxminus}[x] then p=(xα)mg(x),m>1p = (x-\alpha)^mg(x), m>1 and so p(α)=0p'(\alpha) = 0.

    \implies

Denote d:=gcd(p,p),dE[x]d:=\gcd(p, p'), d \in E[x]. Obviously dEd \parallel E and αE:d(α)=0    p(α)=p(α)=0\forall \alpha \in E: d(\alpha) = 0 \implies p(\alpha)=p'(\alpha)=0. But pF[x]    αE:p(α)=p(α)=0p \in F_{\boxminus}[x] \implies \nexists \alpha \in E: p(\alpha)=p'(\alpha)=0, so αE:d(α)=0\nexists \alpha \in E: d(\alpha)=0. So dE=E[x]d \in E^* = E[x]^* and thus gcd(p,p)=1\gcd(p, p')=1 in EE (remember by (2.4.11)(2.4.11) gcd is specified up to a unit). Consequently gcd(p,p)=1\gcd(p, p')=1 in FF.

    \impliedby

If αE:p(α)=p(α)=0\exists \alpha \in E: p(\alpha)=p'(\alpha)=0 then gcd(p,p)1\gcd(p, p') \ne 1. So αE:p(α)=p(α)=0    pF[x]\nexists \alpha \in E: p(\alpha)=p'(\alpha)=0 \implies p \in F_{\boxminus}[x]

\square

note

This theorem is trivial if we consider gcd(p,p)\gcd(p, p') in a splitting field of pp. The value added by this theorem is gcd(p,p)\gcd(p, p') is considerd in the base field.

Proposition 2.9.9: Irreducible polynomial separability

FFfF[x]pPchar F=0    fF[x]char F=p>0    fF[x]    f0    fF[xp]char F=p>0    gF[x]F[x],m0:f(x)=g(xpm)\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &f \in F[x]^- \\ &p \in \mathfrak P \\ \hline \\ &\begin{align*} &\text{char }F = 0 \implies f \in F_{\boxminus}[x] \hspace{0.5cm} \tag{a}\\ &\text{char }F = p > 0 \implies f \in F_{\boxminus}[x] \iff f' \ne 0 \iff f \notin F[x^p] \hspace{0.5cm} \tag{b}\\ &\text{char }F = p > 0 \implies \exists g \in F[x]^- \cap F_{\boxminus}[x], m \ge 0: f(x)=g(x^{p^m}) \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

Note that fF[x]    (gcd(f,f)=1)(gcd(f,f)=f)f \in F[x]^- \implies (\gcd(f, f')=1) \vee (\gcd(f, f')=f) (since ff cannot have any non-constant factors).

a.

If charF=0\text{char}F=0 then degf=degf1    ff    gcd(f,f)=1    (2.9.8)fF[x]\deg f' = \deg f - 1 \implies f \nmid f' \implies \gcd(f, f')=1 \overset{(2.9.8)}\implies f \in F_{\boxminus}[x].

b.

If charF=p>0\text{char}F=p>0 then fF[x]    gcd(f,f)=f    ff    degf<degff=0    fF[xp]f \notin F_{\boxminus}[x] \iff \gcd(f, f')=f \iff f \mid f' \overset{\deg f' < \deg f}\iff f'=0 \iff f \in F[x^p] (otherwise if there's a least one term xn,npqx^n, n \ne pq then the derivative cannot be 00 as it will be the only term with this power and it's not zero).

c.

Assume mm is maximal such that fF[xpm]f \in F[x^{p^m}] (note that fF[xp0]f \in F[x^{p^0}] and the degree of ff is bounded so we can always pick such mm). So assume f=g(xpm),gF[x]f = g(x^{p^{m}}), g \in F[x]. First, gF[x]g \in F[x]^-, otherwise if g=hk    f(x)=h(xpm)k(xpm)g = h\cdot k \implies f(x)=h(x^{p^{m}})\cdot k(x^{p^{m}}) would be reducible which is a contradiction. Next, if gF[xp]g \in F[x^p] then it will contradict the maximality of mm so gF[xp]    (b)gF[x]g \notin F[x^p] \overset{(b)}\implies g \in F_{\boxminus}[x].

\square

Purely inseparable extensions

def: Purely inseparable element

E/FFαEZ(p):={aE:p(a)=0}Z(polF(α))=1αF\begin{align*} &\sphericalangle \\ & E/F \in \mathcal F \\ &\alpha \in E \\ &Z(p):=\{a \in E: p(a)=0\} \\ &|Z(\mathfrak {pol}_F(\alpha))|=1 \\ \hline \\ &\alpha \in F_\Box \end{align*}

def: Purely inseparable extension

E/AFFαE:αFE/F\begin{align*} &\sphericalangle \\ & E/_AF \in \mathcal F \\ &\forall \alpha \in E: \alpha \in F_\Box \\ \hline \\ &E/_\Box F \end{align*}

Example: Purely inseparable extension

If FF,char F=pPF \in \mathcal F, \text{char }F = p \in \mathfrak P then F(xp)/F(x)F(\sqrt[p]x)/F(x) is purely inseparabe extension. This is because polF(x)(xp)=tpx=(tx)p\mathfrak{pol}_{F(x)}(\sqrt[p]x)=t^p-x = (t-x)^p. (the latter equality follows from (2.10.3)(2.10.3) but can also be derived as an exercise).

Proposition 2.9.10: Purely inseparabe element criteria

FFchar F=pPαFαF    n0:αpnFn0:αpnF    polF(α)=(xα)pn\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &\text{char }F = p \in \mathfrak P \\ & \alpha \in \overline F \\ \hline \\ &\begin{align*} & \alpha \in F_\Box \iff \exists n \ge 0: \alpha^{p^n} \in F\hspace{0.5cm} \tag{a}\\ & \exists n \ge 0: \alpha^{p^n} \in F \implies \mathfrak{pol}_F(\alpha)=(x-\alpha)^{p^n}\hspace{0.5cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a., b

    \implies

Define f(x):=polF(α)f(x):=\mathfrak{pol}_F(\alpha). (2.9.9.c)    gF[x]F[x],m0:f(x)=g(xpn)(2.9.9.c) \implies \exists g \in F[x]^- \cap F_{\boxminus}[x], m \ge 0: f(x)=g(x^{p^n}). Then f(x)=(xpnb1)(xpnbn),biF(g)f(x)=(x^{p^n}-b_1)\cdot \ldots \cdot (x^{p^n}-b_n), b_i \in F(\parallel g). Additionally gF[x]    bibjg \in F_\boxminus[x] \implies b_i \ne b_j. Since αF\alpha \in F_\Box we know that α\alpha is the only root of f(x)f(x) so f(x)=xpnb1=(xα)pnf(x)=x^{p^n}-b_1=(x-\alpha)^{p^n}. Note that f(x)f(x) is defined over FF so b1Fb_1 \in F and αpn=b1F\alpha^{p^n}=b_1 \in F. We also proved (b)(b) because f(x)=(xα)pnf(x) = (x-\alpha)^{p^n}.

    \impliedby

If αpn=aF\alpha^{p^n}=a \in F, then if we define f(x):=xpna=(2.10.3)(xα)pnf(x):=x^{p^n}-a\overset{(2.10.3)}=(x-\alpha)^{p^n} then f(α)=0f(\alpha)=0. So polF(α)f(x)    αF\mathfrak {pol}_F(\alpha) \mid f(x) \implies \alpha \in F_\Box.

\square

Proposition 2.9.11: Purely inseparabe and separable extensions

E/AFFαEFF    αFE/F,E/F    E=F\begin{align*} &\sphericalangle \\ &E/_AF \in \mathcal F \\ \hline \\ &\begin{align*} &\alpha \in E \cap F_\boxminus \cap F_\Box \implies \alpha \in F \hspace{0.5cm} \tag{a}\\ &E /_\boxminus F, E /_\Box F \implies E= F \hspace{0.5cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

If α\alpha is the only root of polF(α)\mathfrak {pol}_F(\alpha) and its order is 11 then polF(α)=xα\mathfrak {pol}_F(\alpha)=x-\alpha and so αF\alpha \in F

b.

Follows from (a)(a)

\square

Perfect fields

def: Perfect field

FFE/AF    E/FFFP\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &E/_AF \implies E/_{\boxminus}F \\ \hline \\ &F \in \mathcal F^{\mathcal P} \end{align*}

Proposition 2.9.12: Perfect field types

FFFFPchar F=0    FFPchar F=pP    (FFP    Fp=F)\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ \hline \\ &\begin{align*} &\overline F \in \mathcal F^{\mathcal P} \hspace{0.5cm} \tag{a}\\ &\text{char }F = 0 \implies F \in \mathcal F^{\mathcal P} \hspace{0.5cm} \tag{b}\\ &\text{char }F = p \in \mathfrak P \implies (F \in \mathcal F^{\mathcal P} \iff F^p=F) \hspace{0.5cm} \tag{c}\\ \end{align*} & \end{align*}

Proof

a.

There are no proper extensions of algebraically closed field so FFP\overline F \in \mathcal F^{\mathcal P}

b.

Follows from (2.9.9.a)(2.9.9.a)

c.

    \implies

Consider aFa \in F and p(x)=xpap(x)=x^p-a. Let αF(p),p(α)=0\alpha \in F(\parallel p), p(\alpha) = 0. Note that since char F=p\text{char }F=p by (2.10.3)(2.10.3) we have (xα)p=xpαp=xpa(x-\alpha)^p=x^p-\alpha^p=x^p-a. We know that polF(α)xpa=(xα)p\mathfrak {pol}_F(\alpha) \mid x^p-a=(x-\alpha)^p. So polF(α)=(xα)n,np\mathfrak {pol}_F(\alpha) = (x-\alpha)^n, n \le p. So we have:

FFP    F(α)/F    αF    ordα(polF(α))=1    (xα)2polF(α)    polF(α)=xα    αF    aFp F \in \mathcal F^{\mathcal P} \implies F(\alpha)/_\boxminus F \implies \\ \alpha \in F_\boxminus \implies \text{ord}_{\alpha}(\mathfrak {pol}_F(\alpha))=1 \implies (x-\alpha)^2 \nmid \mathfrak {pol}_F(\alpha) \implies \\ \mathfrak {pol}_F(\alpha) = x-\alpha \implies \alpha \in F \implies a \in F^p

So we proved FFpF \subseteq F^p. Since fields are multiplicatively closed FpFF^p \subseteq F.

    \impliedby

Consider some E/FE/F and αE\alpha \in E, f(x):=polF(α)f(x):=\mathfrak {pol}_F(\alpha). (2.9.9.c)    gF[x]F[x],m0:f(x)=g(xpm)(2.9.9.c) \implies \exists g \in F[x]^- \cap F_{\boxminus}[x], m \ge 0: f(x)=g(x^{p^m}). If g(x)=a0+a1x++anxng(x)=a_0+a_1x + \ldots +a_nx^n then biF:bip=ai\exists b_i \in F: b_i^p=a_i. So f(x)=ibipxipm=(ibixipm1)pf(x)=\sum_i b_i^px^{ip^m}=(\sum_i b_ix^{ip^{m-1}})^p which contradicts irreducibility of ff for any m1m \ge 1. So m=0m=0 and f(x)=g(x)F[x]    αFf(x)=g(x) \in F_\boxminus[x] \implies \alpha \in F_\boxminus.

\square

Example: Perfect fields

Q,R,C\mathbb Q, \mathbb R, \mathbb C are fields of char F=0\text{char } F = 0 so all of them are perfect.

Any finite field is perfect since it has char F=p,pP\text{char } F=p, p \in \mathfrak P and F=FpF=F^p (this fact will be proved it the next section on finite fields)

Example: Non-perfect fields

Fp(x)\mathbb F_p(x) is not perfect since it has a non-separable extension Fp(xp)\mathbb F_p(\sqrt[p]x)

Galois extensions

def: Galois extension

E/FFF=FixGal(E/F)(E)E/GalF,Egalois extension over F\begin{align*} &\sphericalangle \\ &E/F \in \mathcal F \\ &F = \text{Fix}_{\text{Gal}(E/F)}(E) \\ \hline \\ &E/_{\text{Gal}}F, E - \text{galois extension over } F \end{align*}

Example: Galois extensions

C/R\mathbb C / \mathbb R is Galois, since Gal(C/R)={id,σ},σ:a+biabi\text{Gal}(\mathbb C / \mathbb R) = \{\text{id}, \sigma\}, \sigma: a+bi \mapsto a-bi. It can be seen that it fixes exactly R\mathbb R.

Q(2)/Q\mathbb Q(\sqrt 2)/\mathbb Q is also Galois (can be proved similarly).

Example: Non-Galois extensions

Q(23)/Q\mathbb Q(\sqrt[3] 2)/\mathbb Q is not Galois because Gal(Q(23)/Q)={id}\text{Gal}(\mathbb Q(\sqrt[3] 2)/\mathbb Q) = \{\text{id}\} so FixGal(Q(23)/Q)(Q(23))=Q(23)\text{Fix}_{\text{Gal}(\mathbb Q(\sqrt[3] 2)/\mathbb Q)}(\mathbb Q(\sqrt[3] 2))=\mathbb Q(\sqrt[3] 2)

F2(x)/F2(x2)\mathbb F_2(x)/\mathbb F_2(x^2) is not Galois. From the examples above we know that Gal(F2(x)/F2(x2))=id\text{Gal}(\mathbb F_2(x)/\mathbb F_2(x^2))=\text{id}, so FixGal(F2(x)/F2(x2))(F2(x))=F2(x)\text{Fix}_{\text{Gal}(\mathbb F_2(x)/\mathbb F_2(x^2))}(\mathbb F_2(x))=\mathbb F_2(x).

Next we'll state several proposition without the proofs.

Proposition 2.9.13: Galois extension criterion

E/F[E:F]<E/GalF    Gal(E/F)=[E:F]\begin{align*} &\sphericalangle \\ &E / F \\ &[E:F] < \infty \\ \hline \\ &E/_{\text{Gal}}F \iff |\text{Gal}(E/F)|=[E:F] \end{align*}

Proposition 2.9.14: Galois extension criterion for simple extensions

E/FαFEV:={yF(α):pol(α)(y)=0}F(α)/GalF    V=degα\begin{align*} &\sphericalangle \\ &E / F \\ &\alpha \in \overline F_E \\ &V := \{y \in F(\alpha): \mathfrak {pol}(\alpha)(y)=0\} \\ \hline \\ &F(\alpha)/_{\text{Gal}}F \iff |V| = \deg \alpha \end{align*}

Proposition 2.9.15: Galois extension criteria

E/AFFThe following are equivalent:E/GalFE/F,E/FPF[x]F,piF[x],E=F(P)\begin{align*} &\sphericalangle \\ &E/_AF \in \mathcal F \\ \hline \\ &\text{The following are equivalent:} \\ &\begin{align*} &E/_{\text{Gal}}F \hspace{0.5cm} \tag{a}\\ &E/_{\lhd}F, E/_{\boxminus}F \hspace{0.5cm} \tag{b}\\ &\exists P \subseteq F[x]\setminus F, p_i \in F_{\boxminus}[x], E = F(\parallel P) \hspace{0.5cm} \tag{c} \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Take some αE\alpha \in E. Let

X:={σ(α),σGal(E/F)}X:=\{\sigma(\alpha), \sigma \in \text{Gal}(E/F)\}

Note that by (2.9.3.b)(2.9.3.b) any σ\sigma just permutes the roots of pol(α)\mathfrak {pol}(\alpha), so XX is finite and we can assume

X={α1,,αn}X=\{\alpha_1, \ldots, \alpha_n\}

Denote

p(x):=i(xαi)E[x]p(x):=\prod_i(x-\alpha_i) \in E[x]

Note that σGal(E/F):pσ=p\forall \sigma \in \text{Gal}(E/F): p^{\sigma}=p because by (2.9.3.b)(2.9.3.b) σ\sigma just permutes the roots of polynomial. So pFixGal(E/F)(E)[x]=F[x]p\in \text{Fix}_{\text{Gal}(E/F)}(E)[x]=F[x]. Next polF(α)p    polF(α)E,polF(α)F[x]    αF\mathfrak {pol}_F(\alpha) \mid p \implies \mathfrak {pol}_F(\alpha) \parallel E, \mathfrak {pol}_F(\alpha) \in F_{\boxminus}[x] \implies \alpha \in F_{\boxminus}. So we proved that:

αE:polF(α)E,αF\forall \alpha \in E: \mathfrak {pol}_F(\alpha) \parallel E, \alpha \in F_{\boxminus}

It immediately follows that E/FE/_{\boxminus}F. Finally, let's use (2.9.6)(2.9.6). If fF[x],αE:f(α)=0f \in F[x]^-, \alpha \in E: f(\alpha)=0, then f(x)=upolF(α),uFf(x)=u\cdot\mathfrak {pol}_F(\alpha), u \in F^*. Since polF(α)E\mathfrak {pol}_F(\alpha) \parallel E so is fEf \parallel E and so E/FE/_{\lhd}F.

(b)    (c)(b) \implies (c)

Define P:={polF(α):αE}P:=\{\mathfrak{pol}_F(\alpha):\alpha \in E\}, since by (2.9.6)(2.9.6) for every pPp \in P we have pEp \parallel E and so all the roots of PP will be exactly EE, so by definition of a splitting field: E=F(P)E = F(\parallel P). Since E/FE/_{\boxminus}F we have pP:pF[x]\forall p \in P: p \in F_{\boxminus}[x].

(c)    (a)(c) \implies (a)

We will skip the proof, it can be found in Patrick Morandi "Field and Galois theory".

\square

Fundamental theorem of Galois theory

Theorem 2.9.16: Fundamental theorem of Galois theory

E/GalFF[E:F]<FE:F:={L:FFLFE}GE:F:={H:HGGal(E/F)}ϕ:FE:FGE:F,LGal(E/L)ϕ1:GE:FFE:F,HFixH(E)LFE:F,HGE:Fϕ:FE:FGE:F,ϕϕ1=id,ϕ1ϕ=id[E:L]=H,[L:F]=[Gal(E/F):H]HGGal(E/F)    L/GalF\begin{align*} &\sphericalangle \\ &E/_{\text{Gal}}F \in \mathcal F \\ &[E:F] < \infty \\ &\mathcal F_{E:F} := \{L: F \subseteq_F L \subseteq_F E\} \\ &\mathcal G_{E:F}:= \{H: H \subseteq_G \text{Gal}(E/F)\}\\ &\phi: \mathcal F_{E:F} \to \mathcal G_{E:F}, L \mapsto \text{Gal}(E/L)\\ &\phi^{-1}: \mathcal G_{E:F} \to \mathcal F_{E:F}, H \mapsto \text{Fix}_H(E) \\ &L \in \mathcal F_{E:F}, H \in \mathcal G_{E:F} \\ \hline \\ &\begin{align*} & \phi: \mathcal F_{E:F} \leftrightarrow \mathcal G_{E:F}, \phi \phi^{-1}=\text{id}, \phi^{-1} \phi =\text{id} \hspace{0.5cm} \tag{a}\\ &[E:L]=|H|, [L:F]=[\text{Gal}(E/F):H] \hspace{0.5cm} \tag{b} \\ &H \lhd_G \text{Gal}(E/F) \iff L/_{\text{Gal}}F \hspace{0.5cm} \tag{c} \\ \end{align*} \end{align*} EGal(E/E){id}Fix{id}(E)ELGal(E/L)HFixH(E)LFGal(E/F)Gal(E/F)FixGal(E/F)(E)F \begin{CD} E @>\text{Gal}(E/E)>> \{\text{id}\} @>\text{Fix}_{\{\text{id}\}}(E)>> E \\ @AAA @VVV @AAA \\ L @>\text{Gal}(E/L)>> H @>\text{Fix}_{H}(E)>> L \\ @AAA @VVV @AAA \\ F @>\text{Gal}(E/F)>> \text{Gal}(E/F) @>\text{Fix}_{\text{Gal}(E/F)}(E)>> F \end{CD}

Example: Intermediate fields in a splitting field of x32x^3-2 over Q\mathbb Q.

Polynomial x32x^3-2 has 3 roots:

23,23w,23w2,w=i312=e2πi3 \sqrt[3]2, \sqrt[3]2 w, \sqrt[3]2w^2, w = \frac{i\sqrt 3-1}{2}=e^{\frac{2\pi i}{3}}

We know from examples in the previous section that E:=Q(x32)=Q(23,w)E:=\mathbb Q(\parallel x^3-2)=\mathbb Q(\sqrt[3]2, w) and [Q(23,w):Q]=6[\mathbb Q(\sqrt[3]2, w):\mathbb Q]=6. Denote F:=QF:=\mathbb Q.

Note that E/FE/_\lhd F by definition and E/FE/_{\boxminus} F by (2.9.12.b)(2.9.12.b). So by (2.9.15.b)(2.9.15.b) we have E/GalFE/_\text{Gal}F and thus we can apply Fundamental theorem of Galois theory (2.9.16)(2.9.16). If we assume L=FL=F then H=Gal(E/F)H=\text{Gal}(E/F) so by (2.9.16.b)(2.9.16.b) we have

Gal(E/F)=[E:F]=6|\text{Gal}(E/F)|=|[E:F]|=6

It can be shown that the only groups of order 6 are Z6\Z_6 and S3S_3 - the group of all permutations of a set {1,2,3}\{1, 2, 3 \}. Which one is the Galois group?

We know from the examples in the previous section that Q(23)/Q\mathbb Q(\sqrt[3]2)/\mathbb Q is not normal hence is not Galois and so by (2.9.16.c)(2.9.16.c) the corresponding Galois subgroup is not normal. But that's not possible for Z6\Z_6 because it's Abelian. So

Gal(E/F)=S3={(1),(12),(13),(23),(123),((132))} \text{Gal}(E/F)=S_3=\{(1), (1\,2),(1\,3),(2\,3), (1\,2\,3), ((1\,3\,2))\}

The proper non-trivial subgroups of this group are:

H1={(1),(12)}H2={(1),(13)}H3={(1),(23)}H4={(1),(123),(132)}H_1=\{(1), (1\,2)\} \\ H_2=\{(1), (1\,3)\} \\ H_3=\{(1), (2\,3)\} \\ H_4=\{(1), (1\,2\,3), (1\,3\,2)\} \\

We can simplify the structure if we define τ:=(12),σ:=(123)\tau:=(1\,2), \sigma:=(1\,2\,3). Then (13)=στ,(23)=σ2τ(1\,3)=\sigma \tau, (2\,3) = \sigma^2\tau. So we can write:

H1=τGH2=στGH3=σ2τGH4=σGH_1=\lang \tau \rang_G \\ H_2=\lang \sigma \tau \rang_G \\ H_3=\lang \sigma^2 \tau \rang_G \\ H_4=\lang \sigma \rang_G \\

Note that ord σ=3,ord τ=2\text{ord }\sigma = 3, \text{ord }\tau = 2.

Now let's take a look at the FF-automorphisms of EE. They are defined by the action on two elements: 23\sqrt[3]2 and ww. polF(23)=x32,polF(w)=x31\mathfrak {pol}_F(\sqrt[3]2)=x^3-2, \mathfrak {pol}_F(w)=x^3-1. So the possibilites for mapping 23\sqrt[3]2 are {23,w23,w223}\{\sqrt[3]2, w\sqrt[3]2, w^2\sqrt[3]2\} and the possibilites for ww are {w,w2}\{w, w^2\}. Note that we cannot map ww to 11, because 1F1 \in F and we're considering automorphisms fixing FF. So it's clear that:

σ:23w23,wwτ:2323,ww2\sigma: \sqrt[3]2 \mapsto w\sqrt[3]2, w \mapsto w \\ \tau: \sqrt[3]2 \mapsto \sqrt[3]2, w \mapsto w^2 \\

Note that σ\sigma makes a cyclic shift of the 23,w23,w223\sqrt[3]2, w\sqrt[3]2, w^2\sqrt[3]2 roots akin to (123)(1\,2\,3). On the other hand τ\tau swaps ww and w2w^2 roots and w23w \sqrt[3]2 and w223w^2\sqrt[3]2 roots just like (12)(1\,2) would do.

Finally let's see what fields are fixed by Galois subgroups:

H1=τG    L1=FixH1(Q(23,w))=Q(23)H2=στG    L2=FixH2(Q(23,w))=Q(w223)H3=σ2τG    L3=FixH3(Q(23,w))=Q(w23)H4=σG    L4=FixH4(Q(23,w))=Q(w) H_1=\lang \tau \rang_G \implies L_1=\text{Fix}_{H_1}(\mathbb Q(\sqrt[3]2, w))=\mathbb Q(\sqrt[3]2) \\ H_2=\lang \sigma\tau \rang_G \implies L_2=\text{Fix}_{H_2}(\mathbb Q(\sqrt[3]2, w))=\mathbb Q( w^2\sqrt[3]2) \\ H_3=\lang \sigma^2 \tau \rang_G \implies L_3=\text{Fix}_{H_3}(\mathbb Q(\sqrt[3]2, w))=\mathbb Q( w\sqrt[3]2) \\ H_4=\lang \sigma \rang_G \implies L_4=\text{Fix}_{H_4}(\mathbb Q(\sqrt[3]2, w))=\mathbb Q(w)

Let's see for example why L2=Q(w223)L_2 = \mathbb Q( w^2\sqrt[3]2). Consider a root w223w^2\sqrt[3]2: στ(w223)=σ(τ(w223))=σ(w23)=w223\sigma \tau(w^2\sqrt[3]2)=\sigma(\tau(w^2\sqrt[3]2))=\sigma(w\sqrt[3]2)=w^2\sqrt[3]2. We can easily check that other roots are not fixed. Also note that if στ\sigma \tau fixes a root then all other members of στG\lang \sigma \tau \rang_G also fix it.

galois-extension-1

galois-extension-1

On the final note: it's easy to see that H1H2,H3H_1 \cong H_2, \cong H_3 and so are L1L2L3L_1 \cong L_2 \cong L_3 (as they are generates from the root of the same polynomial)

note

It might seem strange that [Q(w):Q]=2[\mathbb Q(w):\mathbb Q]=2 while ww is a root of x31x^3-1. The thing is w2=1ww^2 = -1-w hence such extension degree.

note

The only normal subgroup is σG\lang \sigma \rang_G so the only Galois extension of Q\mathbb Q is Q(w)\mathbb Q(w).