Skip to main content

2.6 Modules, Vector spaces, Algebras

note

In the forthcoming sections, we will omit the proofs of certain self-evident truths. For example, within the context of modules, it's understood that multiplying by (1)(−1) results in the negation of an element, i.e., (1)x=x(−1)⋅x=−x. These facts adhere to the same reasoning principles as those detailed in earlier discussions and can be intuitively grasped by readers who have thoroughly engaged with the material presented in previous sections.

Modules

def: Module

MG+ARR1:R×MMa,bR,x,yM:Associativity:(ab)x=a(bx)Distributivity:a(x+y)=ax+ay(a+b)x=ax+bxIdentity:1x=xMMR(M is R-module)\begin{align*} &\sphericalangle \\ &M \in \mathcal G^{\mathcal A}_+ \\ &R \in \mathcal R^1\\ &\cdot: R\times M \to M \\ &\forall a, b \in R, x,y \in M:\\ \text{Associativity:} \,\,&(ab)\cdot x=a\cdot (b \cdot x) \\ \text{Distributivity:} \,\, &a\cdot(x+y) = a\cdot x + a\cdot y \\ &(a+b)\cdot x = a\cdot x + b\cdot x \\ \text{Identity:} \,\,&1 \cdot x = x \\ \hline \\ &M \in \mathcal M_R \,\,(M \text{ is } R\text{-module}) \\ \end{align*}
note

Operation \cdot on modules is called scalar multiplication and elements from RR - scalars

def: Faithful module

RR1MMR(rR:mM:rm=0)    r=0MMRF(M is a faithful R-module)\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1\\ &M \in \mathcal M_R \\ &(\exists r \in R: \forall m \in M: rm=0) \implies r = 0 \\ \hline \\ &M \in \mathcal M^F_R \,\,(M \text{ is a faithful } R\text{-module}) \\ \end{align*}

Proposition 2.6.1: Ring is a module

RR1RMR\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ \hline \\ &R \in \mathcal M_R \end{align*}

Proof

Obvious by using ring axioms in module definition

Example: Ideal as a module

RR1,IRR    IMRR \in \mathcal R^1, I \lhd_R R \implies I \in \mathcal M_R

Example: Abelian group

MG+A    MMZM \in \mathcal G^{\mathcal A}_+ \implies M \in \mathcal M_\Z, where nx:=x+x++xn timesnx:=\underbrace{x+x+\ldots+x}_{n \text{ times}}.

Example: Polynomials

RR1    R[x]MRR \in \mathcal R^1 \implies R[x] \in \mathcal M_R

Submodules and factor modules

def: Submodule

RR1MMRNGMrR,mN:rmNNMM\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &N \subseteq_G M \\ &\forall r \in R, m \in N: rm \in N & \\ \hline \\ &N \subseteq_M M \end{align*}

Proposition 2.6.2 Submodule criterion

RRCMMRNMNMM    N,rR,x,yN:x+ryN\begin{align*} &\sphericalangle \\ &R \in \mathcal R^\mathcal{C} \\ &M \in \mathcal M_R \\ &N \subseteq M \\ \hline \\ &N \subseteq_M M \iff N \ne \empty, \forall r \in R, x, y \in N: x+ry \in N \end{align*}

Proof

    \implies

Obvious

    \impliedby

r=1    N,x,yN:xyN    (2.2.3)NGMx=0    rR,yN:ryNr = -1 \implies N \ne \empty, \forall x, y \in N: x-y \in N \overset{(2.2.3)}\implies N \subseteq_G M \\ x = 0 \implies \forall r \in R, y \in N: ry \in N

\square

def: Factor module

RR1MMRNMMaR,x+NM/N:a(x+N):=ax+NM/Nfactor module\begin{align*} &\sphericalangle \\ &R \in \mathcal R^\mathcal{1} \\ &M \in \mathcal M_R \\ &N \subseteq_M M \\ &\forall a \in R, x + N \in M/N: a(x+N):= ax + N \\ \hline \\ &M / N - \text{factor module} \end{align*}

Note that if x1+N=x2+N    x1x2N    ax1ax2N    ax1+N=ax2+Nx_1+N=x_2+N \implies x_1-x_2 \in N \implies ax_1-ax_2 \in N \implies ax_1 + N = ax_2 + N, so the multiplication is well-defined.

Homomorphisms and isomorphisms

def: Module homomorphism

RR1M1,M2MRϕ:M1M2ϕ(x+y)=ϕ(x)+ϕ(y),x,yM1ϕ(ax)=aϕ(x),aR,xM1ϕ:M1MM2,M1ϕMM2,ϕmodule homomorphism\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M_1, M_2 \in \mathcal M_R \\ &\phi: M_1 \to M_2 \\ &\phi(x+y)= \phi(x) + \phi(y), x,y \in M_1 \\ &\phi(ax)=a\phi(x), a \in R, x \in M_1 \\ \hline \\ &\phi: M_1 \rightsquigarrow_M M_2, M_1 \overset{\phi}\rightsquigarrow_M M_2,\\ &\phi - \text{module homomorphism} \end{align*}

def: Module isomorphism

RR1M1,M2MRϕ:M1MM2ϕ:M1M2ϕ:M1M2,M1ϕM2ϕmodule isomorphism\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M_1, M_2 \in \mathcal M_R \\ &\phi: M_1 \rightsquigarrow_M M_2\\ &\phi: M_1 \leftrightarrow M_2 \\ \hline \\ &\phi: M_1 \cong M_2, M_1 \overset{\phi}\cong M_2 \\ &\phi - \text{module isomorphism} \\ \end{align*}

Proposition 2.6.3: Homomorphisms kernel is submodule

RR1M1,M2MRϕ:M1MM2kerϕMM1\begin{align*} &\sphericalangle \\ & R \in \mathcal R^{1} \\ &M_1, M_2 \in \mathcal M_R \\ &\phi: M_1 \rightsquigarrow_M M_2 \\ \hline \\ &\ker \phi \subseteq_M M_1 \end{align*}

The proof is very similar to (2.3.8)(2.3.8) so we'll omit that.

Again we'll state four isomorphism theorems for modules without proofs, as proofs are very similar to that of group isomorphism theorems.

Proposition 2.6.4: First isomorphism theorem

RR1M1,M2MRM1ψMM2ϕ:M1M1/kerψnatural homomorphism!η:M1/kerψηMψ(M1),ψ=ηϕ\begin{align*} &\sphericalangle \\ & R \in \mathcal R^1 \\ &M_1, M_2 \in \mathcal M_R \\ &M_1 \overset{\psi}{\rightsquigarrow}_M M_2 \\ &\phi:M_1 \to M_1/\ker \psi - \text{natural homomorphism} \\ \hline \\ &\exists! \eta: M_1/\ker \psi \overset{\eta}{\cong}_M \psi(M_1), \psi = \eta \phi \end{align*}

Theorem 2.6.5: Second isomorphism theorem

RR1MMRN,KMMN+KMMNKMM(N+K)/NMK/(KN)\begin{align*} &\sphericalangle \\ & R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &N, K \subseteq_M M \\ \hline \\ &\begin{align*} & N + K \subseteq_M M \tag{a}\\ & N \cap K \subseteq_M M \tag{b}\\ & (N+K)/N \cong_M K / (K \cap N) \hspace{1cm} \tag{c}\\ \end{align*} \end{align*}

Theorem 2.6.6: Third isomorphism theorem

RR1MMRN,KMMKNM/NM/KN/K\begin{align*} &\sphericalangle \\ & R \in \mathcal R^1 \\ & M \in \mathcal M_R \\ &N, K \subseteq_M M \\ &K \subseteq N \\ \hline \\ &M/N \cong \frac{M/K}{N/K} \end{align*}

Theorem 2.6.7: Correspondence theorem (fourth isomorphism theorem)

RR1MMRNMMS:={S:NMSMM}SN:={SN:SNMM/N}ϕ:SSN,SS/Nϕwell-definedϕ1(SN)={xM:x+NSN}ϕ:SSNNRSMM    ϕ(S)MM/NSNMM/N    ϕ1(SN)MM\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &N \subseteq_M M \\ &\mathfrak S :=\{S: N\subseteq_M S \subseteq_M M\} \\ &\mathfrak S_N :=\{S_N: S_N \subseteq_M M/N\} \\ &\phi: \mathfrak S \to \mathfrak S_N, S \mapsto S/N \\ \hline \\ &\begin{align*} & \phi - \text{well-defined} \tag{a} \\ & \phi^{-1}(S_N) =\{x \in M: x+N \in S_N\} \tag{b}\\ & \phi: \mathfrak S \leftrightarrow \mathfrak S_N \tag{c}\\ &N \subseteq_R S \subseteq_M M \implies \phi(S) \subseteq_M M / N \hspace{1cm} \tag{d}\\ & S_N \subseteq_M M/N \implies \phi^{-1}(S_N) \subseteq_M M \hspace{1cm} \tag{e}\\ \end{align*} \end{align*}

Finitely generated modules

def: Finitely generated module

RR1LMRS:={s1,,sn},SLSM:SSMMLN:SNML:SMNSMRSMs1,,snMfinitely generated module\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &L \in \mathcal M_R \\ &S:= \{s_1, \ldots, s_n\}, S \subseteq L \\ &\lang S \rang_M : S \subseteq \lang S \rang_M \subseteq_M L\\ &\forall N: S \subseteq N \subseteq_M L: \lang S \rang_M \subseteq N \\ \hline \\ &\lang S \rang_{M_R} \equiv \lang S \rang_M \equiv \lang s_1, \ldots, s_n \rang_M - \text{finitely generated module} \end{align*}

Proposition 2.6.8: Finitely generated module explicit form

RR1MMRS:={s1,,sn},SMSM={r1s1++rnsn,riR}\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &S:= \{s_1, \ldots, s_n\}, S \subseteq M \\ \hline \\ &\lang S \rang_M = \{r_1s_1+\ldots+r_ns_n, \forall r_i \in R\} \end{align*}

Proof

N:={r1s1++rksk,riR}Nx,yN,aA:x+ry==r1,1s1++rk,1sk+rr2,1s1++rr2,ksk==r3,1s1++r3,kskN(2.6.2)    NMLN:=\{r_1s_1+\ldots+r_ks_k, r_i \in R\} \\ N \ne \empty \\ \forall x, y \in N, a \in A: x+ry = \\ =r_{1,1}s_1+\ldots+r_{k, 1}s_k + rr_{2, 1}s_1+\ldots+rr_{2, k}s_k = \\ =r_{3, 1}s_1+\ldots+r_{3, k}s_k \in N \\ (2.6.2) \implies N \subseteq_M L

Finally it's obvious that SNS \subseteq N and any submodule containing SS must at least contain NN (aisia_is_i must be in this submodule and thus their sums as well).

\square

def: Linear independence

RR1MMRX:={x1,,xn}Ma1,,anR:a1x1++anxn=0    a1==an=0XL(M),Xlinearly independent over M\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &X :=\{x_1, \ldots, x_n\} \subseteq M \\ &\forall a_1, \ldots, a_n \in R: a_1x_1 + \ldots + a_nx_n = 0 \implies a_1 = \ldots = a_n = 0 \\ \hline \\ &X \in \bot_L(M), X - \text{linearly independent over }M \end{align*}

def: Module basis and rank

RR1NMRLNLL(N)LM=NLBM(N),Lbasis of NrankRN:=n,nrank of N\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &N \in \mathcal M_R \\ &L \subseteq N \\ &L \in \bot_L(N)\\ &\lang L \rang_M = N \\ \hline \\ & L \in \mathfrak B_M(N), L - \text{basis of } N \\ & \text{rank}_R N:=n, n- \text{rank of } N \\ \end{align*}

Proposition 2.6.9: Each module element is a unique linear combination of basis elements

RR1MMRL:={x1,,xn}(n= is possible)LBM(M)xM:!r1,,rnR:x=r1x1++rnxn\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ &L := \{x_1, \ldots, x_n\} \,(n= \infty \text{ is possible})\\ &L \in \mathfrak B_M(M) \\ \hline \\ & \forall x \in M: \exists! r_1, \ldots, r_n \in R: x = r_1x_1+ \ldots + r_nx_n \\ \end{align*}

Proof

r1,,rn,s1,,snR:i:risi,r1x1++rnxn=s1x1++snxn    (r1s1)x1++(rnsn)xn=0    LL(M)ri=si\exists r_1, \ldots, r_n, s_1, \ldots, s_n \in R: \\ \exists i: r_i\ne s_i, r_1x_1+ \ldots + r_nx_n = s_1x_1+ \ldots + s_nx_n \implies \\ (r_1 - s_1)x_1+ \ldots + (r_n-s_n)x_n = 0 \overset{L \in \bot_L(M)}\implies r_i=s_i

\square

Proposition 2.6.10: Nakayama's lemma

ARCMMASM,S<:SI=MIRA,IJMI(A)JIM=MM={0}\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &M \in \mathcal M_A \\ &\exists S \subseteq M, |S| < \infty: \lang S \rang_I=M \\ &I \lhd_R A, I \subseteq \bigcap_{J \in \mathfrak M_I(A)}J \\ &IM = M \\ \hline \\ &M = \{0\} \end{align*}

Proof

Assume that M{0}M \ne \{0\} and S={s1,,sn}S=\{s_1, \ldots, s_n\} is the minimal set such that SI=M\lang S \rang_I=M. Since

IM=M    snIM    mM,aiA,iI:sn=im=i(a1s1++ansn)=i1s1++insn    (1in)sn=i1s1++in1sn1IM = M \implies s_n \in IM \implies \exists m \in M, a_i \in A, i \in I: \\ s_n = im = i(a_1s_1 + \ldots + a_ns_n)= \\ i_1s_1 + \ldots + i_ns_n \implies (1-i_n)s_n=i_1s_1 + \ldots + i_{n-1}s_{n-1}

If 1inA1-i_n \notin A^* then it's contained in some maximal ideal m\mathfrak m (because 1inIA\lang 1-i_n \rang_I \ne A by (2.4.6)(2.4.6)). But inImMI(A)mmi_n \in I \subseteq \bigcap_{m \in \mathfrak M_I(A)}m \subseteq \mathfrak m. This would lead to 1m1 \in \mathfrak m which is impossible for maximal ideal.

So 1inA1-i_n \in A^* and thus

sn=(1in)1i1s1++(1in)1in1sn1s_n = (1-i_n)^{-1}i_1s_1 + \ldots + (1-i_n)^{-1}i_{n-1}s_{n-1}

Which is a contradiction to SS being minimal. Note that in case n=1n=1 this would mean that s1=0s_1=0 which is also a contradiction.

So we proved M={0}M = \{0\}

\square

Corrolary 2.6.11: Module equality check

ARCM,NMAL:L<,LM=MIRA,IJMI(A)JNMMM=IM+NM=N\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &M, N \in \mathcal M_A \\ &\exists L: |L| < \infty, \lang L \rang_M = M \\ &I \lhd_R A, I \subseteq \bigcap_{J \in \mathfrak M_I(A)}J \\ &N \subseteq_M M \\ &M = IM+N \\ \hline \\ &M = N \end{align*}

Proof

Notice that I(M/N)=IM/N=(IM+N)/N=M/NI(M/N)=IM/N=(IM+N)/N=M/N. Obviously M/NM/N is finitely generated, so we can apply (2.6.10)(2.6.10) to I,M/NI, M/N and thus M/N={0}M/N = \{0\}, so M=NM=N.

\square

Proposition 2.6.12: Cayley–Hamilton theorem

ARCMMAL:L<,LM=MIRAϕ:MMϕ(M)IMϕa:MM,xaxnN,aiI:ϕn+ϕa1ϕn1++ϕan=0\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &M \in \mathcal M_A \\ &\exists L: |L| < \infty, \lang L \rang_M = M \\ & I \lhd_R A \\ & \phi: M \rightsquigarrow M \\ & \phi(M) \subseteq IM \\ & \phi_a:M \rightsquigarrow M, x \to ax \\ \hline \\ &\exists n \in \N, a_i \in I: \phi^n + \phi_{a_1}\phi^{n-1}+\ldots+\phi_{a_n} = 0 \end{align*}
note
ϕn:xϕ(ϕ(ϕ(x)))n times\phi^n: x \mapsto \underbrace{\phi(\phi(\ldots \phi(x)))}_{n\text{ times}}

Proof

Consider L:={l1,,ln},LM=ML:=\{l_1, \ldots, l_n\}, \lang L \rang_M = M.

ϕ(li)IM    riI,miM:ϕ(li)=r1m1++rkmk=r1jsj1lj++rnjsjnlj=jajlj,ajI,ljL\phi(l_i) \in IM \implies \exists r_i \in I, m_i \in M: \phi(l_i) = r_1m_1+\ldots+r_km_k = \\ r_1\sum_j s_{j1}l_j + \ldots + r_n\sum_j s_{jn}l_j = \sum_j a_{j}l_j, a_j \in I, l_j \in L

As a side note - it's obvious that ϕ(li)=jajlj\phi(l_i)=\sum_j a_{j}l_j for some ajAa_j \in A, condition ϕ(li)IM\phi(l_i) \in IM guarantees that ajIa_j \in I.

So we can write ϕ(li)=jaijlj\phi(l_i) = \sum_j a_{ij}l_j.

Consider a set of endomorphisms End M={ϕ:MM}\text{End } M=\{\phi: M \rightsquigarrow M\}. End M\text{End } M is a ring with (ϕ+ψ)(x):=ϕ(x)+ψ(x)(\phi+\psi)(x) := \phi(x)+\psi(x) and (ϕψ)(x):=ϕ(ψ(x)))(\phi\psi)(x):=\phi(\psi(x))).

Then we can consider a module with the following scalar multiplication:

:End M×MM,ϕxϕ(x) \cdot: \text{End } M \times M \to M, \phi \cdot x \mapsto \phi(x)

And define matrix AA:

A:=(ϕa11ϕa1mϕan1ϕanm)A:=\begin{pmatrix} \phi_{a_{11}} & \dots & \phi_{a_{1m}} \\ \vdots & \ddots & \vdots\\ \phi_{a_{n1}} & \dots & \phi_{a_{nm}} \\ \end{pmatrix}

Then we can write:

ϕ(li)=jaijlj    ϕIl=Al    (ϕIA)l=0    adj(ϕIA)(ϕIA)l=0    det(ϕIA)Il=0\phi(l_i) = \sum_j a_{ij}l_j \implies \phi I\cdot l=A\cdot l \implies \\ (\phi I - A)\cdot l = 0 \implies \text{adj}(\phi I - A)(\phi I - A) \cdot l = 0 \implies \\ \det(\phi I - A)I \cdot l = 0

Next note that det(ϕIA)=ϕn+ϕa1ϕn1++ϕan=0\det(\phi I - A) = \phi^n + \phi_{a_1}\phi^{n-1}+\ldots+\phi_{a_n} = 0 and when applied to each lil_i it results in 00. So it's 00 on all elements of LL and thus is zero on all module elements.

\square

Free modules

def: Direct sum

RRINiI:MiMRM:={x=(x1,x2,,xi,),xiMi,i:xi0<}x,yM,rR:x+y:=(x1+y1,,xi+yi,)rx:=(rx1,,rxi,)M:=iIMi(M is a direct sum of Mi)\begin{align*} &\sphericalangle \\ &R \in \mathcal R \\ &I \subseteq \N \\ &\forall i \in I: M_i \in \mathcal M_R \\ &M:=\{x=(x_1, x_2, \ldots, x_i, \ldots), x_i \in M_i, |i: x_i \ne 0| < \infty\} \\ &\forall x, y \in M, r \in R: \\ &x+y := (x_1 + y_1, \ldots, x_i+y_i, \ldots) \\ &rx := (rx_1, \ldots, rx_i, \ldots) \\ \hline \\ &M:=\bigoplus_{i \in I}M_i \,\, (M \text{ is a direct sum of }M_i) \end{align*}
note

For MMAM \in \mathcal M_A we define Mn:=MMMn timesM^n:= \underbrace{M \oplus M \oplus \ldots \oplus M}_{n \text{ times}}

note

The only difference between the direct sum iIMi\bigoplus_{i \in I}M_i and the direct product iIMi\prod_{i \in I}M_i is the finite amount of non-zero xix_i in direct sums.

note

Sometimes, the concepts of external and internal direct sums can be mixed up. The explanation we provided earlier applies to the external direct sum.

However, there's also the internal direct sum, which refers to the sum of submodules of a module that do not overlap. Thus, internal direct sum is a breakdown of a module into submodules.

Despite the potential for confusion, both types of sums use the \oplus symbol. In our discussions, we will reserve this notation specifically for external direct sums.

def: Free module

AA    (2.6.1)AMAMMAMMiIAMfree A-module\begin{align*} &\sphericalangle \\ &A \in \mathcal A \overset{(2.6.1)}{\implies} A \in \mathcal M_A \\ &M \in \mathcal M_A \\ &M \cong_M \bigoplus_{i \in I}A \\ \hline \\ &M - \text{free } A\text{-module} \end{align*}

Proposition 2.6.13: Free module has a basis

RR    (2.6.1)RMRMMRϕ:MMi=1nR    LBM(M)\begin{align*} &\sphericalangle \\ &R \in \mathcal R \overset{(2.6.1)}{\implies} R \in \mathcal M_R \\ &M \in \mathcal M_R \\ \hline \\ \exists \phi:&M \cong_M \bigoplus_{i = 1}^nR \iff \exists L \in \mathfrak B_M(M) \end{align*}

Proof

    \implies

ei:=(0,0,,1i,,0)L:={ϕ1(e1),,ϕ1(en)}e_i:=(0, 0, \ldots , \underbrace{1}_i, \ldots, 0) \\ L:=\{\phi^{-1}(e_1), \ldots, \phi^{-1}(e_n)\} \\

By definition LMM\lang L \rang_M \subseteq M. Let's prove that LMM\lang L \rang_M \supseteq M:

xM:ϕ(x)=(r1,,rn)    x=ϕ1(ϕ(x))=ϕ1((r1,,rn))=ϕ1(r1e1++rnen)=r1ϕ1(e1)++rnϕ1(en)    xLM\forall x\in M: \phi(x)=(r_1, \ldots, r_n) \implies \\ x = \phi^{-1}(\phi(x)) = \phi^{-1}((r_1, \ldots, r_n))=\\ \phi^{-1}(r_1e_1+\ldots+r_ne_n)=r_1\phi^{-1}(e_1)+\ldots + r_n\phi^{-1}(e_n) \implies x \mathfrak \in \lang L \rang_M\\

Now let's prove that r1,,rnR:r1ϕ(e1)++rnϕ(xn)=0    r1==rn=0\forall r_1, \ldots, r_n \in R: r_1\phi(e_1) + \ldots + r_n\phi(x_n) = 0 \implies r_1 = \ldots = r_n = 0.

r1ϕ(e1)++rnϕ(en)=0    ϕ1r1e1++rnen=0    r1==rn=0r_1\phi(e_1) + \ldots + r_n\phi(e_n) = 0 \overset{\phi^{-1}}\implies \\ r_1e_1 + \ldots + r_ne_n = 0 \implies r_1=\ldots= r_n = 0

    \impliedby

Let L={x1,,xn}L=\{x_1, \ldots, x_n\}. Define ϕ:Mi=1nR,x=r1x1++rnxn(r1,,rn)\phi: M \to \bigoplus_{i =1}^nR, x = r_1x_1+\dots + r_nx_n \mapsto (r_1, \ldots, r_n).

By (2.6.9)(2.6.9) ϕ\phi is well-defined and injective. It's also surjective since LM=M\lang L\rang_M = M. So Mi=1nRM \leftrightarrow \bigoplus_{i =1}^nR. Let's prove that Mϕi=1nRM \overset{\phi}\rightsquigarrow \bigoplus_{i =1}^nR

x,yM,x=r1x1++rnxn,y=s1x1++snxn:ϕ(x+y)=ϕ((r1+s1)x1++(rn+sn)xn)=(r1+s1,,rn+sn)=(r1,,rn)+(s1,,sn)=ϕ(x)+ϕ(y)\forall x, y \in M, x=r_1x_1+\ldots+r_nx_n, y = s_1x_1+\ldots+s_nx_n: \\ \phi(x + y)=\phi((r_1+s_1)x_1+\ldots + (r_n+s_n)x_n)= \\ (r_1+s_1, \ldots, r_n+s_n)=(r_1, \ldots, r_n)+ (s_1, \ldots, s_n)= \\ \phi(x) + \phi(y) rR,xM:ϕ(ax)=ϕ(ar1x1++arnxn)=(ar1,,arn)=aϕ(x)\forall r \in R, x \in M: \phi(ax)=\phi(ar_1x_1+\ldots+ar_nx_n)=(ar_1, \ldots, ar_n)=a\phi(x)

\square

Example: Non-free module

Consider ZnMZ\Z_n \in M_{\Z}, where ax:=x++xa timesax:=\underbrace{x+\ldots+x}_{a \text{ times}}.

If we have a basis {x1,,xk}\{x_1, \ldots, x_k\} then nx1++nxk=0nx_1+\ldots+nx_k = 0 which contradicts linear independence of basis elements.

Proposition 2.6.14: Finitely generated module is a factor module of a fininte free module

RR1MMRXM,X<:XM=M    nN,NMRn,η:MMRn/N\begin{align*} &\sphericalangle \\ &R \in \mathcal R^1 \\ &M \in \mathcal M_R \\ \hline \\ &\exists X \subseteq M, |X| < \infty : \lang X \rang_M = M \iff \\ &\exists n \in \N, N \subseteq_M R^n, \eta: M \cong_M R^n/N \end{align*}

Proof

    \implies

Let X={x1,,xn},XM=MX = \{x_1, \ldots , x_n\}, \lang X \rang_M = M. Now define mapping ϕ:RnM,(r1,,rn)r1x1++rnxn\phi: R^n \to M, (r_1, \ldots, r_n) \mapsto r_1x_1 + \ldots + r_nx_n. Let's prove that ϕ:RnMM\phi:R^n \rightsquigarrow_M M :

x,yM:x=r1x1++rnxn,y=s1x1++snxnϕ(x+y)=(r1+s1)x1++(rn+sn)xn==r1x1+s1x1++rnxn+snxn=ϕ(x)+ϕ(y)ϕ(ax)=ar1x1++arnxn=a(r1x1++rnxn)=aϕ(x)\forall x, y \in M: x = r_1x_1+\ldots+r_nx_n, y = s_1x_1+\ldots+s_nx_n \\ \phi(x+y)=(r_1+s_1)x_1 + \ldots + (r_n+s_n)x_n = \\ =r_1x_1+s_1x_1 + \ldots + r_nx_n+s_nx_n = \phi(x) +\phi(y) \\ \phi(ax) = ar_1x_1 + \ldots + ar_nx_n = a(r_1x_1 + \ldots + r_nx_n) = a \phi(x)

It's clear that ϕ(Rn)=M\phi(R^n)=M. So by (2.6.4)(2.6.4) MRn/kerϕ,N:=kerϕM \cong R^n / \ker \phi, N:=\ker \phi.

    \impliedby

We can define homomorphism ψ:RnM,ψ=η1ϕ\psi: R^n \to M, \psi = \eta^{-1}\phi, where ϕ:RnMRn/N\phi: R^n \rightsquigarrow_M R^n / N - natural homomorphism.

ϕ(Rn)=Rn/N,η1(Rn/N)=M    ψ(Rn)=Mei:=(0,0,,1i,,0)X:={ψ(e1),,ψ(en)}e1,,enM=RnXM=ψ(e1),,ψ(en)M=ψ(e1,,enM)=ψ(Rn)=M\phi(R^n)=R^n/N, \eta^{-1}(R^n/N) = M \implies \psi(R^n) = M \\ e_i:=(0, 0, \ldots , \underbrace{1}_i, \ldots, 0) \\ X:=\{ \psi(e_1), \ldots, \psi(e_n) \} \\ \lang e_1, \ldots, e_n \rang_M = R^n \\ \lang X \rang_M = \lang \psi(e_1), \ldots, \psi(e_n) \rang_M = \psi(\lang e_1, \ldots, e_n \rang_M) = \psi(R^n)=M

\square

Vector spaces

def: Vector space

FF    FRCVMFV vector space\begin{align*} &\sphericalangle \\ &F \in \mathcal F \implies F \in \mathcal R^{\mathcal C} \\ &V \in \mathcal M_F \\ \hline \\ &V - \text{ vector space} \end{align*}

The key distinction between the definitions of modules and vector spaces is that the underlying ring for a vector space is a field. Although vector spaces share conceptual similarities with modules, they use different terminology. Below, we provide a comparison of equivalent terms used in each context:

ModuleVector spaceM is an A-moduleM is a vector space over Am is an element of Mm is a vector of Ma is a ring element a is a scalar N is submodule of MN is subspace of MM/N is a factor moduleM/N is a factor spaceM is a free module of rank kM is a vector space of dimension krankAM=kdimAM=kN generates MN spans MϕA-module homomorphismϕlinear transformation\def\arraystretch{1.5} \begin{array}{c|c} \text{Module} & \text{Vector space} \\ \hline M \text{ is an } A\text{-module} & M \text{ is a vector space over } A\\ \hdashline m \text{ is an element of } M & m \text{ is a vector of } M\\ \hdashline a \text{ is a ring element } & a \text{ is a scalar }\\ \hdashline N \text{ is submodule of } M & N \text{ is subspace of } M\\ \hdashline M/N \text{ is a factor module} & M/N \text{ is a factor space} \\ \hdashline M \text{ is a free module of rank } k & M \text{ is a vector space of dimension } k \\ \hdashline \text{rank}_AM=k & \text{dim}_AM=k\\ \hdashline N \text{ generates } M & N \text{ spans } M \\ \hdashline \phi - A\text{-module homomorphism} & \phi - \text{linear transformation}\\ \hdashline \end{array}

For notation purposes, we will use the same symbols for both vector spaces and modules

Algebras

def: Algebra

A,LRCϕ:ARL,ϕ(1)=1:A×LL,abϕ(a)b    LMALAϕ,A(LA-algebra)\begin{align*} &\sphericalangle \\ & A, L \in \mathcal R^\mathcal{C} \\ &\phi: A \rightsquigarrow_R L, \phi(1) = 1\\ &\cdot: A \times L \to L, a \cdot b \mapsto \phi(a)\cdot b \implies L \in \mathcal M_A \\ \hline \\ &L \in \mathcal A_{\phi, A} \,\,\, (L - A\text{-algebra}) \end{align*}

Example: Commutative ring is a Z\Z-algebra

Consider LRCL \in \mathcal R^\mathcal{C} and ϕ:ZL:n1++1n times\phi: \Z \to L: n \mapsto \underbrace{1 + \ldots + 1}_{n \text{ times}}. Then it's easy to check that LAϕ,ZL \in \mathcal A_{\phi, \Z}.

Proposition 2.6.15 Algebra over field contains this field

FFLAϕ,FXL:FϕRX\begin{align*} &\sphericalangle \\ &F \in \mathcal F \\ &L \in \mathcal A_{\phi, F} \\ \hline \\ &\exists X \subseteq L: F \overset{\phi}\cong_R X \end{align*}

Proof

(2.4.20)    kerϕ={0}    (2.3.9)Fϕ(F)L(2.4.20) \implies \ker \phi = \{0\} \overset{(2.3.9)}\implies F \cong \phi(F) \subseteq L

def: Algebra homomorphism

ARCL1Aϕ1,AL2Aϕ2,Aψ:L1RL2,ψ:L1ML2,ψ(1)=1ψ:L1AL2A-algebra homomorphism\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &L_1 \in \mathcal A_{\phi_1, A} \\ &L_2 \in \mathcal A_{\phi_2, A} \\ &\psi: L_1 \rightsquigarrow_R L_2 ,\psi: L_1 \rightsquigarrow_M L_2, \psi(1)=1 \\ \hline \\ &\psi: L_1 \rightsquigarrow_A L_2 - A\text{-algebra homomorphism} \end{align*}

def: Finite Algebra

ARCLAϕ,AXL,X<:XM=LLfinite algrebra\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &L \in \mathcal A_{\phi, A} \\ &\exists X \subseteq L, |X| \lt \infty: \lang X \rang_M = L \\ \hline \\ &L - \text{finite algrebra} \end{align*}

def: Finitely generated algebra

ARCLAϕ,ASL,S={s1,,sn}:xL:pϕ(A)[x1,,xn]:x=p(s1,,sn)Lfinitely generated algrebra\begin{align*} &\sphericalangle \\ &A \in \mathcal R^{\mathcal C} \\ &L \in \mathcal A_{\phi, A} \\ &\exists S \subseteq L, S = \{s_1, \ldots, s_n\}: \\ &\forall x \in L: \exists p \in \phi(A)[x_1, \ldots, x_n]: x=p(s_1, \ldots, s_n)\\ \hline \\ &L - \text{finitely generated algrebra} \end{align*}
note

Equivalently, if we consider A[x1,,xn]Aid,AA[x_1, \ldots, x_n] \in \mathcal A_{id, A} (idid is identity mapping), then LL is a finitely generated algebra if and only if

n,ϕ:A[x1,,xn]AL,ϕ(A[x1,,xn])=L\exists n, \phi: A[x_1, \ldots, x_n] \rightsquigarrow_A L, \phi(A[x_1, \ldots, x_n]) = L

def: Finitely generated ring

A ring that is a finetely generated Z-algebra\Z\text{-algebra}