Skip to main content

3.2 Regular functions and morphisms

Regular functions in topological spaces

We want to consider functions defined on topological spaces. In theory we could define any functions. However in a topological space we want them to be consistent with the topology defined. In particular, we want to be able to tell what functions are defined on each open subset and we want to have a mechanics of projecting a function from open set to it's subset. This brings us to the definition of pre-sheaf

def: Pre-sheaf, pre-ringed space

(X,T)T(S)OX:ToR,UOX(U)OX()={0}U,VTo,UV:ρV,U:OX(V)ROX(U),ffUρU,U=idWTo,UVW    ρW,U=ρV,UρW,V(S,T,OX)RprespOXpre-sheafρrestriction\begin{align*} &\sphericalangle \\ &(X, T) \in \mathcal T(S) \\ &\mathcal O_X:T^o \to \mathcal R, U \mapsto \mathcal O_X(U) \\ &\mathcal O_X(\empty) = \{0\} \\ &\forall U,V \in T^o, U \subseteq V: \\ &\exists \rho_{V, U}: \mathcal O_X(V) \rightsquigarrow_R \mathcal O_X(U), f \mapsto f_{|U} \\ &\rho_{U,U} = \text{id} \\ &W \in T^o, U \subseteq V \subseteq W \implies \rho_{W,U}= \rho_{V,U} \circ \rho_{W,V}\\ \hline \\ &(S, T, \mathcal O_X) \in \mathcal R^{sp}_{pre} \\ &\mathcal O_X - \text{pre-sheaf} \\ &\rho - \text{restriction} \end{align*}

The pre-sheaf describes the set of functions that are having some global property. For example a set of constant functions. But we want to be more flexible: define functions locally and then make sure that the function that is defined by gluing local definitions is still a viable function. Here's the definition that allows to do just that:

def: Sheaf, ringed space

(X,T,OX)RprespU,UiTo,fiOX(Ui):U=iUi,fiUiUj=fjUiUj    !fOX(U):fUi=fi(X,T,OX)Rsp ringed spaceOX sheaf fOX section \begin{align*} &\sphericalangle \\ &(X, T, \mathcal O_X) \in \mathcal R^{sp}_{pre} \\ &\forall U, U_i \in T^o, f_i \in \mathcal O_X(U_i): U = \bigcup_i U_i, f_{i|U_i \cap U_j}=f_{j|U_i \cap U_j} \implies \\ &\exists! f \in \mathcal O_X(U): f_{|U_i}=f_i \\ \hline \\ &(X, T, \mathcal O_X) \in \mathcal R^{sp}- \text{ ringed space} \\ &\mathcal O_X - \text{ sheaf } \\ &f \in \mathcal O_X - \text{ section } \end{align*}

Example: Pre-sheaf and Sheaf

Consider a ring of constant functions on R\mathbb R. Then ρ\rho in this case is trivial so it's a pre-sheaf. However it's not a sheaf. Consider functions f1=1f_1 = 1, f2=2f_2 = 2 and open sets U1:=(0,1),U2:=(1,2),U=U1U2U_1:=(0, 1), U_2:= (1, 2), U = U_1 \cup U_2 (open in Euclidean topology). Then trivially f1U1U2=f2U1U2f_{1|U_1 \cap U_2}=f_{2|U_1 \cap U_2} since U1U2=U_1 \cap U_2=\empty but there's no function in the pre-sheaf that equals 11 on U1U_1 and 22 on U2U_2 since functions are globally constant.

To make this pre-sheaf a sheaf in a ringed space we add a piecewise constant functions on open sets.

Finally we'd like to define local rings on topology, that is rings of functions defined locally in the neighborhood of some point.

def: Stalk at point P

(X,T,OX)RspPXU,VTo,PUV,fOX(U),gOX(V):(U,f)s(V,g)    WTo,PW,WUV:fW=gWOX,P:={[U,f]s,UTo,PU,fOX(U)}stalkfOX,Pgerm\begin{align*} &\sphericalangle \\ &(X, T, \mathcal O_X) \in \mathcal R^{sp} \\ &P \in X \\ &\forall U, V \in T^o, P \in U \cap V, f \in \mathcal O_X(U), g \in \mathcal O_X(V): \\ &(U, f) \sim_s (V, g) \iff \exists W \in T^o, P \in W, W \subseteq U \cap V: f_{|W}=g_{|W} \\ \hline \\ &\mathcal O_{X, P}:=\{[U, f]_{\sim s}, U \in T^o, P \in U, f \in \mathcal O_X(U)\} - \text{stalk} \\ &f \in \mathcal O_{X, P} - \text{germ} \end{align*}

Morphisms in topological spaces

Addinitionally we'd like to define an analogue of homomorphisms (continuous functions) and isomorphisms (homeomorphisms) for topological spaces.

def: Continous function

(X1,T1)T(X2,T2)Tf:X1X2XT2c    f1(X)T1cf:X1TX2continous function\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T \\ &(X_2, T_2) \in \mathcal T \\ &f: X_1 \to X_2 \\ &X \in T_2^c \implies f^{-1}(X) \in T_1^c \\ \hline \\ &f: X_1 \rightsquigarrow_T X_2 - \text{continous function} \end{align*}

def: Homeomorphism

(X1,T1)T(X2,T2)Tf:X1X2f:X1TX2f1:X2TX1f:X1TX2\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T \\ &(X_2, T_2) \in \mathcal T \\ &f: X_1 \leftrightarrow X_2 \\ &f: X_1 \rightsquigarrow_T X_2 \\ &f^{-1}: X_2 \rightsquigarrow_T X_1 \\ \hline \\ &f: X_1 \cong_T X_2 \end{align*}

So now we defined homomorphisms of topological spaces. What about ringed spaces?

def: Pullback operator

(X1,T1)T(X2,T2)Tϕ:X1TX2UT2of:UFϕf:ϕ1(U)F,ffϕϕpullback operator\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T \\ &(X_2, T_2) \in \mathcal T \\ &\phi: X_1 \rightsquigarrow_T X_2 \\ &U \in T_2^o \\ &f: U \to \overline F \\ \hline \\ &\phi^*f: \phi^{-1}(U) \to \overline F, f \to f \circ \phi \\ &\phi^* - \text{pullback operator} \end{align*}

def: Ringed space morphism

(X1,T1,OX1)Rsp(X2,T2,OX2)Rspϕ:X1TX2UT2o    ϕ(OX2(U))OX1(ϕ1(U))ϕ:X1RspX2\begin{align*} &\sphericalangle \\ &(X_1, T_1, \mathcal O_{X_1}) \in \mathcal R^{sp} \\ &(X_2, T_2, \mathcal O_{X_2}) \in \mathcal R^{sp} \\ &\phi: X_1 \rightsquigarrow_T X_2 \\ &U \in T_2^o \implies \phi^*(\mathcal O_{X_2}(U)) \subseteq \mathcal O_{X_1}(\phi^{-1}(U)) \\ \hline \\ &\phi: X_1 \rightsquigarrow_{Rsp} X_2 \\ \end{align*}

def: Ringed space isomorphism

(X1,T1,OX1)Rsp(X2,T2,OX2)Rspϕ:X1RspX2ϕ1:X2RspX1ϕϕ1=idX1ϕ1ϕ=idX1ϕ:X1RspX2\begin{align*} &\sphericalangle \\ &(X_1, T_1, \mathcal O_{X_1}) \in \mathcal R^{sp} \\ &(X_2, T_2, \mathcal O_{X_2}) \in \mathcal R^{sp} \\ &\phi: X_1 \rightsquigarrow_{Rsp} X_2 \\ &\exists \phi^{-1}: X_2 \rightsquigarrow_{Rsp} X_1 \\ &\phi \circ \phi^{-1} = \text{id}_{X_1} \\ &\phi^{-1} \circ \phi = \text{id}_{X_1} \\ \hline \\ &\phi: X_1 \cong_{Rsp} X_2 \\ \end{align*}

Affine regular functions

First we want to prove that any polynomial AnA1\mathbb A^n \to \mathbb A^1 is continous in Zariski topology.

Proposition 3.2.1: Polynomial is continuous

AnfF[x1,,xn]f:AnTA1\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &f \in \overline F[x_1, \ldots, x_n] \\ \hline \\ &f: \mathbb A^n \rightsquigarrow_T \mathbb A^1 \end{align*}

Proof

Consider closed set XA1X \subseteq \mathbb A^1 with ideal I(X)I(X). Then f1(X)={xAn:f(x)X}f^{-1}(X)=\{x \in \mathbb A^n: f(x) \in X\}. But f(x)X    gI(X):g(f(x))=0f(x) \in X \iff \forall g \in I(X): g(f(x)) = 0. In other words if I(X)=g1,,gnII(X)=\lang g_1, \ldots, g_n \rang_I then I(f1(X))=g1f,,gnfII(f^{-1}(X))=\lang g_1 \circ f, \ldots, g_n \circ f \rang_I. Since gifg_i \circ f is a polynomial the set f1(X)f^{-1}(X) is closed.

\square

Note that polynomial f/gf/g will be also continous on open sets where g(x)0g(x) \ne 0. Since we're dealing with polynomials in algebraic geometry using it's very natural to define sheaf in the following way:

def: Affine sheaf

An(X,T)Tc,(X)UToOX(U):={ϕ:UF:f,gF[x1,,xn]:QU:ϕ(Q)=f(Q)g(Q),g(Q)0}\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c, -}(X) \\ &U \in T^o \\ \hline \\ &\mathcal O_X(U):=\{\phi: U \to \overline F: \exists f, g \in \overline F[x_1, \ldots, x_n]: \forall Q \in U: \phi(Q)= \frac{f(Q)}{g(Q)}, g(Q) \ne 0\} \end{align*}

Using this definition we obviously have stalk defined as well. While these definitions work well they're sometimes sowewhat hard for analyzing functions in affine space. We'd like to have an easiler definition. Further we'll describe regular functions on a set UU that will correspond to affine sheaf on UU and regular functions at point PP that will macth affine stalk at point PP.

We start by considering polynomials F[x1,,xn]\overline F[x_1, \ldots, x_n] on An\mathbb A^n and their behavior on subspaces.

def: Affine coordinate ring

An(X,T)Tc,(X)A(X):=F[x1,,xn]/I(X)A(X)coordinate ring\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c, -}(X) \\ \hline \\ &A(X):=\overline F[x_1, \ldots, x_n] / I(X) \\ &A(X) - \text{coordinate ring} \end{align*}
note

Since irreducible closed sets correspond to prime vanishing ideals, A(X)RIDA(X) \in \mathcal R^{\mathcal {ID}}.

Consider p,qA(X)p, q \in A(X) then pX=qX    (pq)X=0    pqI(X)p_{|X}=q_{|X} \iff (p-q)_{|X}=0 \iff p-q \in I(X). Thus coordinate ring is a class of equivalence of polynomial functions.

Example: Coordinate ring for elliptic curve

Consider (An,TcZc(An)),F=C(\mathbb A^n, T^c \in \mathcal Z^c(\mathbb A^n)), \overline F = \mathbb C. Define X:=Z(y2x3+xI)X:=Z(\lang y^2-x^3+x \rang_I). Then A(X)=C[x,y]/y2x3+xIA(X)=\mathbb C[x, y]/\lang y^2-x^3+x \rang_I. Note that if we consider a restriction of functions f,gC[x,y]f, g \in \mathbb C[x, y] to XCX \to \mathbb C then there's no difference between f=y2x3+x+2f = y^2-x^3+x+2 and g=2g=2 in these restrictions (they have the exact same values on all of XX). Accordingly ff and gg lie in the same coset in A(X)A(X).

def: Function field

(X,T)Tc,(X)A(X):=F[x1,,xn]/I(X)    A(X)RIDF(X):=F(A(X))\begin{align*} &\sphericalangle \\ &(X, T) \in \mathcal T^{c, -}(X) \\ &A(X):=\overline F[x_1, \ldots, x_n] / I(X) \implies A(X) \in \mathcal R^{\mathcal {ID}} \\ \hline \\ &F(X):=\mathfrak F(A(X)) \end{align*}

Now when we have the definition of polynomial functions we can go further and define locally regular functions:

def: Regular functions at point P

An(X,T)Tc,(X)OX,Pr:={fgF(X),g(P)0}fOX,Prregular function on X at P\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c,-}(X) \\ &\mathcal O^r_{X, P}:=\{\frac{f}{g} \in F(X), g(P) \ne 0\} \\ \hline \\ &f \in \mathcal O^r_{X, P} - \text{regular function on } X \text{ at } P \\ \end{align*}
note

Consider ideal mX,P:={fA(X),f(P)=0}\mathfrak m_{X, P}:=\{f \in A(X), f(P)=0\}. It's easy to see that it's the kernel evaluation homomorphism εP\varepsilon_P so A(X)/mX,PRFA(X)/\mathfrak m_{X, P}\cong_R \overline F and so mX,P\mathfrak m_{X, P} is a maximal ideal. So we can make another definition of regular function at point using localization:

OX,Pr:=A(X)mX,P\mathcal O^r_{X, P}:=A(X)_{\mathfrak m_{X, P}}

Having this definition we can trivially define regular function on any open set as:

def: Regular function on open set

An(X,T)Tc,(X)OXr(U):=PUOX,PrfOXr(U)regular function on X on U\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c,-}(X) \\ &\mathcal O^r_X(U):=\bigcap_{P \in U}\mathcal O^r_{X,P} \\ \hline \\ &f \in \mathcal O^r_{X}(U) - \text{regular function on } X \text{ on } U \\ \end{align*}
note

Another way of defining regular functions is OXr(U):={fgF(A(X)),PU:g(P)0}\mathcal O^r_{X}(U):=\{\frac{f}{g} \in \mathfrak F(A(X)), \forall P \in U: g(P) \ne 0\}

note

Since XToX \in T^o we have OXr(X)\mathcal O^r_{X}(X) also defined.

Example: Glued regular function

As in the example with piecewise constant functions not any regular function can be expressed as a quotient of polynomials globally. Consider X=Z(x1x4x2x3)X=Z(x_1x_4 - x_2x_3) and open set U=U1U2,U1=X{x20},U2=X{x40}U=U_1 \cup U_2, U_1 = X \cap \{x_2 \ne 0\}, U_2 = X \cap \{x_4 \ne 0\} . Consider f=x1x2f=\frac{x_1}{x_2} on U1U_1 and f=x3x4f = \frac{x_3}{x_4} on U2U_2. These two functions (x1x2,x3x4\frac{x_1}{x_2},\frac{x_3}{x_4}) coincide on XX as long as they're defined so ff is regular. On the other hand it cannot be represented simply as a quotient of polynomials.

Proposition 3.2.2: Regular function at distinguished subsets is a coordinate ring localization

An(X,T)Tc,(X)fA(X)Xf:=XZ(f)={PX:f(P)0}A(X)f:={gfr,gA(x),r0}OX(Xf)RA(X)fOX(X)RA(X)\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c, -}(X) \\ &f \in A(X) \\ &X_f:=X \setminus Z(f) = \{P \in X: f(P) \ne 0\} \\ &A(X)_f:=\{\frac{g}{f^r}, g\in A(x), r \ge 0\} \\ \hline \\ &\begin{align*} & \mathcal O_X(X_f) \cong_R A(X)_f \hspace{0.5cm} \tag{a}\\ & \mathcal O_X(X) \cong_R A(X) \hspace{0.5cm} \tag{b}\\ \end{align*} \end{align*}

Proof

a.

    \impliedby

If ϕA(X)f\phi \in A(X)_f then ϕ=gfr,gA(X)\phi=\frac{g}{f^r}, g \in A(X). Since frA(X)f^r \in A(X) as well and fr0f^r \ne 0 on XfX_f so ϕOX(Xf)\phi \in \mathcal O_X(X_f).

    \implies

Consider ϕOX(Xf)\phi \in \mathcal O_X(X_f) and denote

J:={gA(X):gϕA(X)}J:=\{g \in A(X): g\phi \in A(X)\}

Note that this is quotient ideal (A(X):ϕ)(A(X): \phi), in particular it's and ideal, i.e. JRA(X)J \lhd_R A(X). If we prove that frJf^r \in J for some rr then we're done.

Consider arbitrary PXfP \in X_f, we know that ϕOX,Pr\phi \in \mathcal O^r_{X,P} so ϕ=hg\phi = \frac{h}{g} with g0g \ne 0 in a neighborhood of PP. By definition of JJ it means that gJg \in J so JJ contains some function g:g(P)0g: g(P) \ne 0. That means that PZ(J)X=Z(I(X)+J)P \notin Z(J) \cap X = Z(I(X)+J) or PXZ(I(X)+J)P \in X \setminus Z(I(X)+J). Since we took arbitrary PP it means that XfXZ(I(X)+J)X_f \subseteq X \setminus Z(I(X)+J) or equivalently Z(I(X)+J)Z(f)Z(I(X)+J) \subseteq Z(f). This implies fI=I(Z(f))I(Z(I(X)+J))=I(X)+J\sqrt{\lang f \rang_I}=I(Z(f))\subseteq I(Z(I(X)+J))=\sqrt{I(X)+J}. Note that I(X)=0I(X) = 0 in A(X)A(X) so we have r:frJ\exists r: f^r \in J

b.

Follows from (a)(a) by taking f=1f=1

\square

note

It might seem surprising that a set of regular functions which is f/gf/g where f,gf, g are polynomials is isomorphic to just polynomials (coordinate ring). However if you consider a case of An\mathbb A^n for example. It's clear that there could be no f/gf/g with QAn:g(Q)0\forall Q \in \mathbb A^n: g(Q) \ne 0 since gg has always roots in algebraically closed F\overline F. So we really only having plain polynomials as regular functions.

So we defined the regular functions in An\mathbb A^n, next we want to relate this definition to sheaf and stalks that we defined in a topological space earlier.

Using this definition the stalk for affine space is already defined. Now let's prove that germ is the same as regular function at point PP:

Proposition 3.2.3: Stalk at P is the set of regular functions at P

An(X,T)TPXUToOX,PrROX,POXr(U)ROX(U)\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T \\ &P \in X \\ &U \in T^o \\ \hline \\ &\begin{align*} &\mathcal O^r_{X,P} \cong_R \mathcal O_{X,P} \hspace{0.5cm} \tag{a}\\ &\mathcal O^r_{X}(U) \cong_R \mathcal O_{X}(U) \hspace{0.5cm} \tag{b}\\ \end{align*} & \end{align*}

Proof

a.

We'll estabish a bijective mapping between two sets, proving isomorphism is left as an exercise.

    \implies

Consider ϕOX,Pr\phi \in \mathcal O^r_{X,P} it means that ϕ=fg,g(P)0\phi = \frac{f}{g}, g(P) \ne 0. A set Xg={QX:g(Q)0}X_g=\{Q \in X: g(Q) \ne 0\}. We'll map this function to the germ [Xg,ϕ]s[X_g, \phi']_{\sim s} where ϕ(Q)=f(Q)/g(Q)\phi'(Q)=f(Q)/g(Q). Note that XgTo,PXg,ϕOX(Xg)X_g \in T_o, P \in X_g,\phi' \in \mathcal O_X(X_g) as required. Since fg\frac{f}{g} is the same on any open set and afag=fg\frac{af}{ag}=\frac{f}{g} as a polynomials and pointwise, this mapping is well-defined.

    \impliedby

Take some ϕOX,P\phi \in \mathcal O_{X,P} and consider (U,fg)s(U,fg)(U, \frac{f}{g}) \sim_s (U', \frac{f'}{g'}). We map this germ to fg\frac{f}{g} and we want to prove that in this case fg=fg\frac{f}{g}=\frac{f'}{g'}.

(U,fg)s(U,fg)(U, \frac{f}{g}) \sim_s (U', \frac{f'}{g'}) means that WUU:QW:fg(Q)=fg(Q)\exists W \subseteq U \cap U': \forall Q \in W:\frac{f}{g}(Q)=\frac{f'}{g'}(Q) or QW:fg(Q)=fg(Q)\forall Q \in W: f'g(Q)=fg'(Q). Consider Z(fgfg)Z(f'g-fg'). We know that this is a closed set and WZ(fgfg)W \subseteq Z(f'g-fg'). But by (3.1.1)(3.1.1) we have W=X\overline W = X so Z(fgfg)=XZ(f'g-fg')=X and thus fg=fgf'g=fg' on XX or equivalently fgfgI(X)f'g-fg' \in I(X) which means fg=fgf'g=fg' in A(X)A(X).

b.

Trivially follows from (a)(a)

\square

Projective regular functions

As in affine case let's start by defining sheaf of functions:

def: Projective sheaf

Pn(X,T)Tc,(X)UToOX(U):={ϕ:UF:d0,f,gF[x0,,xn]d:QU:ϕ(Q)=f(Q)g(Q),g(Q)0}\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &(X, T) \in \mathcal T^{c, -}(X) \\ &U \in T^o \\ \hline \\ &\mathcal O_X(U):=\{\phi: U \to \overline F: \exists d \ge 0, f, g \in \overline F[x_0, \ldots, x_n]_d: \forall Q \in U: \\ &\phi(Q)= \frac{f(Q)}{g(Q)}, g(Q) \ne 0\} \end{align*}
note

We require ff and gg to have the same homogeneous degree, otherwise their ratio is not well-defined (depends on the representative of projective point)

Next, we'll define regular functions

def: Projective coordinate ring

Pn(X,T)Tc,(X)S(X):=F[x0,,xn]/I(X)S(X)projective coordinate ring\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &(X, T) \in \mathcal T^{c, -}(X) \\ \hline \\ &S(X):=\overline F[x_0, \ldots, x_n] / I(X) \\ &S(X) - \text{projective coordinate ring} \end{align*}
note

Unlike in affine case, projective coordinate rings doesn't specify valid functions on the sets of XX. This is because these functions are not well-defined

note

Just like in the previous section we consider S(X)S(X) as a graded ring S(X)=d0S(X)dS(X)=\bigoplus_{d \ge 0}S(X)_d.

def: Projective regular functions at point P

An(X,T)Tc,(X)OX,Pr:={fg,f,gS(X)d,g(P)0}fOX,Prregular function on X at P\begin{align*} &\sphericalangle \\ &\mathbb A^n \\ &(X, T) \in \mathcal T^{c,-}(X) \\ &\mathcal O^r_{X, P}:=\{\frac{f}{g}, f, g \in S(X)_d, g(P) \ne 0\} \\ \hline \\ &f \in \mathcal O^r_{X, P} - \text{regular function on } X \text{ at } P \\ \end{align*}

Regular functions on a set is defined in the same way as in affine case.

Note that in case of projective regular functions OXr(X)=F\mathcal O^r_X(X)=\overline F. Why? We can use the same reasoning as in affine case. The denominator must be constant, otherwise it will have a root in XX and thus will be undefined. But since the numerator degree is the same as denominator degree it's also constant.

Morphisms

We already know what is a ringed space morphism. Let's formulate criteria that are true in affine space.

Proposition 3.2.4: Affine ringed spaces morphisms criteria

(X1,T1,OX1)Rsp(X2,T2,OX2)Rspϕ:X1TX2The following are equivalent:UT2o    ϕ(OX2(U))OX1(ϕ1(U))ϕ(OX2(X2))OX1(X1)PX1:ϕ(OX2,ϕ(P))OX1,P\begin{align*} &\sphericalangle \\ &(X_1, T_1, \mathcal O_{X_1}) \in \mathcal R^{sp} \\ &(X_2, T_2, \mathcal O_{X_2}) \in \mathcal R^{sp} \\ &\phi: X_1 \rightsquigarrow_T X_2 \\ \hline \\ &\text{The following are equivalent:}\\ &\begin{align*} & U \in T_2^o \implies \phi^*(\mathcal O_{X_2}(U)) \subseteq \mathcal O_{X_1}(\phi^{-1}(U)) \hspace{0.5cm} \tag{a}\\ & \phi^*(\mathcal O_{X_2}(X_2)) \subseteq \mathcal O_{X_1}(X_1) \hspace{0.5cm} \tag{b}\\ & \forall P \in X_1: \phi^*(\mathcal O_{X_2, \phi(P)}) \subseteq \mathcal O_{X_1, P}\hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Trivial, take U=X2U=X_2

(b)    (c)(b) \implies (c)

Take fOX2,ϕ(P)f \in \mathcal O_{X_2, \phi(P)}. Since by (3.2.2):OX2,ϕ(P)OX2,ϕ(P)c(3.2.2): \mathcal O_{X_2, \phi(P)} \cong \mathcal O^c_{X_2, \phi(P)} we have f=g/h,g,hA(X2)=OX2c(X2)=OX2(X2),h(f(P))0f = g/h, g, h \in A(X_2)=\mathcal O^c_{X_2}(X_2)=\mathcal O_{X_2}(X_2), h(f(P)) \ne 0. Since g,hOX2(X2)g, h \in \mathcal O_{X_2}(X_2) we know that ϕf,ϕg\phi^*f, \phi^*g are in OX1(X1)=OX1c(X1)=A(X1)O_{X_1}(X_1)=O^c_{X_1}(X_1)=A(X_1) so because ϕh(P)0\phi^*h(P)\ne 0, we have ϕf=ϕgϕhOX1,Pc=OX1,P\phi^*f=\frac{\phi^*g}{\phi^*h} \in \mathcal O^c_{X_1,P}=\mathcal O_{X_1,P}

(c)    (a)(c) \implies (a) Follows immediately from OX(U)=PUOX,P\mathcal O_X(U)=\bigcap_{P \in U}\mathcal O_{X,P}

\square

Consider a morphism ϕ:X1X2\phi: X_1 \to X_2 where X1AnX_1 \subseteq \mathbb A^n, X2AkX_2 \subseteq \mathbb A^k. Then we can describe ϕ:(x1,,xn)(ϕ1(x1,,xn),,ϕk(x1,,xn))\phi: (x_1, \ldots, x_n) \mapsto (\phi_1(x_1, \ldots, x_n), \ldots, \phi_k(x_1, \ldots, x_n)). If we take fF[x1,,xk]/I(X2)f \in \overline F[x_1, \ldots, x_k]/I(X_2) then ϕf=f(ϕ1(x1,,xn),,ϕk(x1,,xn))\phi^*f=f(\phi_1(x_1, \ldots, x_n), \ldots, \phi_k(x_1, \ldots, x_n)). Note that ϕf\phi^*f must be a polynomial so ϕi\phi_i is a polynomial and it must be well-defined for each f(modI(X2))f \pmod {I(X_2)} which happens when PX1:(ϕ1(P),,ϕ2(P))X2\forall P \in X_1: (\phi_1(P), \ldots, \phi_2(P)) \in X_2. So for affine and projective spaces we'll have the following form of a regular morphism:

ϕ:(x1,,xn)(ϕ1(x1,,xn),,ϕk(x1,,xn))ϕiA(X1)=OX1(X1)PX1:ϕ(P)X2\phi: (x_1, \ldots, x_n) \mapsto (\phi_1(x_1, \ldots, x_n), \ldots, \phi_k(x_1, \ldots, x_n)) \\ \phi_i \in A(X_1) = \mathcal O_{X_1}(X_1) \\ \forall P \in X_1: \phi(P) \in X_2

In fact, there's a one to one correspondence between irreducible closed sets morpishsms Y1RspY2Y_1 \rightsquigarrow_{Rsp} Y_2 and coordinate rings F\overline F-algebra homomorphisms A(Y1)AA(Y2)A(Y_1) \rightsquigarrow_A A(Y_2). (a statement we will not prove here)

We can extend the definition of morphism to open subsets. Since open subset is dense this will still be a valid relation but with more flexibility:

def: Rational map

(X1,T1)Tc,(X2,T2)Tc,UT1o,U,f:URspX2f:X1RatX2\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T^{c,-} \\ &(X_2, T_2) \in \mathcal T^{c,-} \\ &\exists U \in T_1^o, U \ne \empty, f: U \rightsquigarrow_{Rsp} X_2 \\ \hline \\ &f: X_1 \rightsquigarrow_{Rat} X_2 \end{align*}

Next we want define an analogue of surjective map:

def: Dominant rational map

(X1,T1)Tc,(X2,T2)Tc,f:X1RatX2f(X1)=X2fdominant map\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T^{c,-} \\ &(X_2, T_2) \in \mathcal T^{c,-} \\ &f: X_1 \rightsquigarrow_{Rat} X_2 \\ &\overline {f(X_1)}= X_2 \\ \hline \\ &f - \text{dominant map} \end{align*}

Finally as usual there's a notion of isomorphisms:

def: Birational map

(X1,T1)Tc,(X2,T2)Tc,f:X1RatX2g:X2RatX1fg=idgf=idf:X1RatX2\begin{align*} &\sphericalangle \\ &(X_1, T_1) \in \mathcal T^{c,-} \\ &(X_2, T_2) \in \mathcal T^{c,-} \\ &f: X_1 \rightsquigarrow_{Rat} X_2 \\ &\exists g: X_2 \rightsquigarrow_{Rat} X_1\\ &f \circ g = \text{id} \\ &g \circ f = \text{id} \\ \hline \\ &f: X_1 \rightsquigarrow_{Rat} X_2 \end{align*}

Note that now that we have a rational map that is defined on open set, we're free to consider ratios of polynomials and thus rational map has a form:

ϕ:(x1,,xn)(ϕ1(x1,,xn),,ϕk(x1,,xn))ϕiO(U),UToPU:ϕ(P)X2\phi: (x_1, \ldots, x_n) \mapsto (\phi_1(x_1, \ldots, x_n), \ldots, \phi_k(x_1, \ldots, x_n)) \\ \phi_i \in \mathcal O(U), U \in T^o \\ \forall P \in U: \phi(P) \in X_2

Or we can say that rational map is a map from X1X_1 to X2X_2 represented by ratios of polynomials that are defined everywhere but in some closed subset of X1X_1.

Actually these both forms for morphisms and regular functions make sense since regular functions in essence are morphisms to A1\mathbb A^1 and P1\mathbb P^1 respectively so we have a product of morphisms in this case.

Finally note that in case of projective rational map:

ϕ:[x0,,xn][ϕ0(x0,,xn),,ϕk(x0,,xn)]ϕiOX1(U)PU:ϕ(P)X2\phi: [x_0, \ldots, x_n] \mapsto [\phi_0(x_0, \ldots, x_n), \ldots, \phi_k(x_0, \ldots, x_n)] \\ \phi_i \in \mathcal O_{X_1}(U) \\ \forall P \in U: \phi(P) \in X_2

We can surely multiply each coordinate of a projective point by the same constant and get the same point. So for a point PX1UP \in X_1 \setminus U we can find some gPOX1,Prg_P \in \mathcal O^r_{X_1, P} such that [gP(P)ϕ0(P),,gP(P)ϕk(P)]X2[g_P(P)\phi_0(P), \ldots, g_P(P)\phi_k(P)] \in X_2 we say that the rational map is regular at point PP. If it's regular for any point in X1UX_1 \setminus U then it's a morphism.