3.3 Varieties, dimensions and rational points
Varieties
def: Affine variety
∢ ( X , T , O X ) ∈ R s p ∃ X ′ ∈ A n − ∩ Z c ( A n ) : X ≅ R s p X ′ X ∈ V ( A n ) \begin{align*}
&\sphericalangle \\
&(X, T, \mathcal O_X) \in \mathcal R^{sp} \\
&\exists X' \in \mathbb A^{n-} \cap \mathcal Z^c(\mathbb A^n): X \cong_{Rsp} X' \\
\hline
\\
&X \in \mathcal V(\mathbb A^n)
\end{align*} ∢ ( X , T , O X ) ∈ R s p ∃ X ′ ∈ A n − ∩ Z c ( A n ) : X ≅ R s p X ′ X ∈ V ( A n )
That is affine variety is a ringed space isomorphic to some irreducible closed set of affine space
Proposition 3.3.1: Affine distinguished subsets are varieties
∢ A n ( X , T , O X ) ∈ R s p , c , − f ∈ O X ( X ) = A ( X ) X f : = X ∖ Z ( f ) ∃ X ′ ∈ A n + 1 , − ∩ Z c ( A n + 1 ) : ( X ′ , T ′ , A ( X ) f ) ≅ R ( X f , T ∣ X f , O ∣ X f ) \begin{align*}
&\sphericalangle \\
&\mathbb A^n \\
&(X, T, \mathcal O_X) \in \mathcal R^{sp, c, -} \\
&f \in \mathcal O_X(X)=A(X) \\
&X_f:=X \setminus Z(f) \\
\hline
\\
&\exists X' \in \mathbb A^{n+1,-} \cap \mathcal Z^c(\mathbb A^{n+1}): (X', T', A(X)_f) \cong_R (X_f, T_{|X_f}, \mathcal O_{|X_f})
\end{align*} ∢ A n ( X , T , O X ) ∈ R s p , c , − f ∈ O X ( X ) = A ( X ) X f := X ∖ Z ( f ) ∃ X ′ ∈ A n + 1 , − ∩ Z c ( A n + 1 ) : ( X ′ , T ′ , A ( X ) f ) ≅ R ( X f , T ∣ X f , O ∣ X f )
O ∣ X f \mathcal O_{|X_f} O ∣ X f is a natural restriction on subsets of X f X_f X f
Proof
Let f ′ f' f ′ be a representative of f f f in A ( X ) A(X) A ( X ) . Consider an ideal J ⊲ R F ‾ [ x 1 , … , x n , t ] , J : = ⟨ I ( X ) , 1 − t f ′ ⟩ I J \lhd_R \overline F[x_1, \ldots, x_n, t], J:=\lang I(X), 1-tf'\rang_I J ⊲ R F [ x 1 , … , x n , t ] , J := ⟨ I ( X ) , 1 − t f ′ ⟩ I . Next, X ′ : = Z ( J ) = { ( P , λ ) , P ∈ X f , λ = 1 f ′ ( P ) } X':=Z(J)=\{(P, \lambda), P \in X_f, \lambda = \frac{1}{f'(P)}\} X ′ := Z ( J ) = {( P , λ ) , P ∈ X f , λ = f ′ ( P ) 1 } . The zero set indeed has this form because on Z ( f ) : 1 − t f ′ Z(f): 1-tf' Z ( f ) : 1 − t f ′ never goes to 0 0 0 and on X f X_f X f it does go to 0 0 0 . Also since the last variable t = 1 / f ′ t=1/f' t = 1/ f ′ it's clear that A ( X ′ ) = A ( X ) f A(X')=A(X)_f A ( X ′ ) = A ( X ) f . So let's prove:
( X ′ , T ′ , A ( X ) f ) ≅ R ( X f , T ∣ X f , O ∣ X f ) (X', T', A(X)_f) \cong_R (X_f, T_{|X_f}, \mathcal O_{|X_f}) ( X ′ , T ′ , A ( X ) f ) ≅ R ( X f , T ∣ X f , O ∣ X f )
Consider a projection map π : X ′ → X f , ( P , λ ) ↦ P \pi: X' \to X_f, (P, \lambda) \mapsto P π : X ′ → X f , ( P , λ ) ↦ P and inverse π − 1 : X f → X ′ , P ↦ ( P , 1 f ′ ( P ) ) \pi^{-1}: X_f \to X', P \mapsto (P, \frac{1}{f'(P)}) π − 1 : X f → X ′ , P ↦ ( P , f ′ ( P ) 1 ) . Since A ( X ) f A(X)_f A ( X ) f and O ∣ X f ( X f ) O_{|X_f}(X_f) O ∣ X f ( X f ) are essentially the same (both have polynomial in numerator and some power of f f f in denominator), it's easy to see that π \pi π is indeed a ringed space isomorphism.
□ \square □
def: Pre-variety
∢ ( X , T , O X ) ∈ R s p , − ∃ U i ∈ T o : X = ⋃ i = 1 k U i ∀ i : ( U i , O X ∣ U i ) ∈ V ( A n ( i ) ) ( X , T , O X ) ∈ V p r e \begin{align*}
&\sphericalangle \\
&(X, T, \mathcal O_X) \in \mathcal R^{sp, -} \\
&\exists U_i \in T_o: X = \bigcup_{i=1}^kU_i \\
&\forall i: (U_i, \mathcal O_{X|U_i}) \in \mathcal V(\mathbb A^{n(i)})
\\
\hline
\\
&(X, T, \mathcal O_X) \in \mathcal V^{pre}
\end{align*} ∢ ( X , T , O X ) ∈ R s p , − ∃ U i ∈ T o : X = i = 1 ⋃ k U i ∀ i : ( U i , O X ∣ U i ) ∈ V ( A n ( i ) ) ( X , T , O X ) ∈ V p re
Example: Affine pre-variety
Obvously any affine variety is a pre-variety.
Proposition 3.3.2: Projective variety is a pre-variety
∢ P n ( X , T , O X ) ∈ R s p , c , − ( X , T , O X ) ∈ V p r e \begin{align*}
&\sphericalangle \\
&\mathbb P^n \\
&(X, T, \mathcal O_X) \in \mathcal R^{sp, c, -}
\\
\hline
\\
&(X, T, \mathcal O_X) \in \mathcal V^{pre}
\end{align*} ∢ P n ( X , T , O X ) ∈ R s p , c , − ( X , T , O X ) ∈ V p re
Proof
Consider X 0 : = { [ a 0 , … , a n ] , a 0 ≠ 0 } X_0:= \{[a_0, \ldots, a_n], a_0 \ne 0\} X 0 := {[ a 0 , … , a n ] , a 0 = 0 } . If I ( X ) = ⟨ f 1 , … , f r ⟩ I I(X)= \lang f_1, \ldots, f_r \rang_I I ( X ) = ⟨ f 1 , … , f r ⟩ I and define g i ( x 1 , … , x n ) : = f i ( 1 , x 1 , … , x n ) g_i(x_1, \ldots, x_n):=f_i(1, x_1, \ldots, x_n) g i ( x 1 , … , x n ) := f i ( 1 , x 1 , … , x n ) , Y : = Z ( ⟨ g 1 , … , g r ⟩ I ) Y:=Z(\lang g_1, \ldots, g_r \rang_I) Y := Z (⟨ g 1 , … , g r ⟩ I ) . It's easy to build a morphism:
ϕ : X 0 → Y , [ a 0 , … , a n ] → [ a 1 a 0 , … , a n a 0 ] ϕ − 1 : Y → X 0 , ( a 1 , … , a n ) ↦ [ 1 , a 1 , … , a n ] \phi: X_0 \to Y, [a_0, \ldots, a_n] \to [\frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0}] \\
\phi^{-1}: Y \to X_0, (a_1, \ldots, a_n) \mapsto [1, a_1, \ldots, a_n] ϕ : X 0 → Y , [ a 0 , … , a n ] → [ a 0 a 1 , … , a 0 a n ] ϕ − 1 : Y → X 0 , ( a 1 , … , a n ) ↦ [ 1 , a 1 , … , a n ]
In this case:
ϕ ∗ ( p ( a 1 , … , a n ) q ( a 1 , … , a n ) ) = p ( a 1 a 0 , … , a n a 0 ) q ( a 1 a 0 , … , a n a 0 ) ϕ − 1 ∗ ( p ( a 0 , … , a n ) q ( a 1 , … , a 1 ) ) = p ( 1 , a 1 , … , a n ) q ( 1 , a 1 , … , a n ) \phi^*(\frac{p(a_1, \ldots, a_n)}{q(a_1, \ldots, a_n)})=\frac{p(\frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0})}{q(\frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0})} \\
\phi^{-1*}(\frac{p(a_0, \ldots, a_n)}{q(a_1, \ldots, a_1)})=\frac{p(1, a_1, \ldots, a_n)}{q(1, a_1, \ldots, a_n)} ϕ ∗ ( q ( a 1 , … , a n ) p ( a 1 , … , a n ) ) = q ( a 0 a 1 , … , a 0 a n ) p ( a 0 a 1 , … , a 0 a n ) ϕ − 1 ∗ ( q ( a 1 , … , a 1 ) p ( a 0 , … , a n ) ) = q ( 1 , a 1 , … , a n ) p ( 1 , a 1 , … , a n )
So these functions are regular and it's easy to see that closed sets goes to closed sets. So
X 0 ≅ R s p Y X_0 \cong_{Rsp} Y X 0 ≅ R s p Y
In the same way we can define isomorphism for X i X_i X i and we know that X = ⋃ i X i X = \bigcup_i X_i X = ⋃ i X i so X ∈ V q X \in \mathcal V_q X ∈ V q
□ \square □
def: Variety
∢ ( X , T , O X ) ∈ V p r e ∀ ( Y , T ′ , O Y ) ∈ V p r e , f 1 , f 2 : Y ⇝ R s p X ⟹ { P ∈ Y : f 1 ( P ) = f 2 ( P ) } ∈ T ′ c ( X , T , O X ) ∈ V \begin{align*}
&\sphericalangle \\
&(X, T, \mathcal O_X) \in \mathcal V^{pre} \\
&\forall (Y, T', \mathcal O_Y) \in \mathcal V^{pre}, f_1, f_2: Y \rightsquigarrow_{Rsp}X \implies \\
&\{P \in Y: f_1(P)=f_2(P)\} \in T'^c
\\
\hline
\\
&(X, T, \mathcal O_X) \in \mathcal V
\end{align*} ∢ ( X , T , O X ) ∈ V p re ∀ ( Y , T ′ , O Y ) ∈ V p re , f 1 , f 2 : Y ⇝ R s p X ⟹ { P ∈ Y : f 1 ( P ) = f 2 ( P )} ∈ T ′ c ( X , T , O X ) ∈ V
We define the general notion of variety for the sake of completness. Affine and projective varieties (meaning irreducible closet sets) are varieties.
def: Non-singular point
∢ S n X ∈ V ( S n ) I ( X ) = ⟨ f 1 , … , f k ⟩ I P ∈ X rank ∣ ∣ ∂ f i / ∂ x j ( P ) ∣ ∣ = n − dim X P ∈ S ( X ) P − non-singular point of X \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&X \in \mathcal V(\mathbb S^n) \\
&I(X) = \lang f_1, \ldots, f_k \rang_I \\
&P \in X \\
&\text{rank } || \partial f_i/\partial x_j(P)||=n-\dim X
\\
\hline
\\
&P \in \cancel S(X) \\
&P - \text{ non-singular point of }X
\end{align*} ∢ S n X ∈ V ( S n ) I ( X ) = ⟨ f 1 , … , f k ⟩ I P ∈ X rank ∣∣ ∂ f i / ∂ x j ( P ) ∣∣ = n − dim X P ∈ S ( X ) P − non-singular point of X
def: Non-singular variety
∢ S n X ∈ V ( S n ) X = S ( X ) X − non-singular variety \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&X \in \mathcal V(\mathbb S^n) \\
&X=\cancel S(X)
\\
\hline
\\
&X - \text{non-singular variety}
\end{align*} ∢ S n X ∈ V ( S n ) X = S ( X ) X − non-singular variety
Dimensions
def: Dimension of a topological space
∢ ( X , T ) ∈ T dim X : = sup n { X 0 ⊂ X 1 ⊂ … ⊂ X n , X i ∈ X − ∩ T c } \begin{align*}
&\sphericalangle \\
&(X, T) \in \mathcal T\\
\hline
\\
&\dim X:=\sup_n\{X_0 \subset X_1 \subset \ldots \subset X_n, X_i \in X^- \cap T^c \}
\end{align*} ∢ ( X , T ) ∈ T dim X := n sup { X 0 ⊂ X 1 ⊂ … ⊂ X n , X i ∈ X − ∩ T c }
Proposition 3.3.3: Dimension of closed set is a dimension of it's coordinate ring
∢ S n ( X , T ) ∈ T c dim X = dim A ( X ) \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&(X, T) \in \mathcal T^{c} \\
\hline
\\
&\dim X = \dim A(X)
\end{align*} ∢ S n ( X , T ) ∈ T c dim X = dim A ( X )
Proof
By ( 3.1.13 ) (3.1.13) ( 3.1.13 ) each chain of irreducible closed sets X 0 ⊂ … ⊂ X n ⊆ X X_0 \subset \ldots \subset X_n \subseteq X X 0 ⊂ … ⊂ X n ⊆ X correspond to prime ideals P 0 ⊃ … ⊃ P n ⊇ I ( X ) P_0 \supset \ldots \supset P_n \supseteq I(X) P 0 ⊃ … ⊃ P n ⊇ I ( X ) and by ( 2.3.12 ) (2.3.12) ( 2.3.12 ) these correspond to prime ideals in A ( X ) A(X) A ( X ) . Since these two correspondences are bijections, we finish the proof.
We'll state two propositions from commutative algebra without a proof
Proposition 3.3.4: Krull dimension and transcendence degree
∢ F ∈ F B ∈ R I D , B − finitely generated F-algebra dim B = trdeg F ( B ) / F p ∈ P I ( B ) ⟹ ht p + dim B / p = dim B \begin{align*}
&\sphericalangle \\
&F \in \mathcal F \\
&B \in \mathcal R^{\mathcal {ID}}, B - \text{finitely generated F-algebra}
\\
\hline
\\
&\begin{align*}
& \dim B = \text{trdeg }\mathfrak F(B)/F\hspace{0.5cm} \tag{a}\\
& \mathfrak p \in \mathfrak P_I(B) \implies \text{ht } \mathfrak p + \dim B/\mathfrak p = \text{dim } B\hspace{0.5cm} \tag{b}\\
\end{align*}
\end{align*} ∢ F ∈ F B ∈ R I D , B − finitely generated F-algebra dim B = trdeg F ( B ) / F p ∈ P I ( B ) ⟹ ht p + dim B / p = dim B ( a ) ( b )
Proposition 3.3.5: UFD and prime ideals criterion
∢ N ∈ R N N ∈ R U F D ⟺ ∀ p ∈ P I ( N ) , ht p = 1 : ∃ f ∈ N : p = ⟨ f ⟩ I \begin{align*}
&\sphericalangle \\
&N \in \mathcal R^{\mathcal {N}} \\
\hline
\\
&N \in \mathcal R^{\mathcal {UFD}} \iff \forall \mathfrak p \in \mathfrak P_I(N), \text{ht } \mathfrak p = 1: \exists f \in N: \mathfrak p = \lang f \rang_I
\end{align*} ∢ N ∈ R N N ∈ R U F D ⟺ ∀ p ∈ P I ( N ) , ht p = 1 : ∃ f ∈ N : p = ⟨ f ⟩ I
Proposition 3.3.6: Krull's hauptidealsatz
∢ N ∈ R N f ∈ N p ∈ P I ( N ) : f ∈ p , ∄ p ′ ∈ P I ( N ) : f ∈ p ′ ⊆ p ht p = 1 \begin{align*}
&\sphericalangle \\
&N \in \mathcal R^{\mathcal N} \\
&f \in N \\
&\mathfrak p \in \mathfrak P_I(N): f \in \mathfrak p, \nexists \mathfrak p' \in \mathfrak P_I(N): f \in \mathfrak p' \subseteq \mathfrak p
\\
\hline
\\
&\text{ht }\mathfrak p = 1
\end{align*} ∢ N ∈ R N f ∈ N p ∈ P I ( N ) : f ∈ p , ∄ p ′ ∈ P I ( N ) : f ∈ p ′ ⊆ p ht p = 1
Proposition 3.3.7: Dimension of an open set equals the dimension of its closure
∢ ( X , T ) ∈ T c , − U ∈ T o dim U = dim U ‾ \begin{align*}
&\sphericalangle \\
&(X, T) \in \mathcal T^{c,-} \\
&U \in T^o
\\
\hline
\\
&\dim U = \dim \overline U
\end{align*} ∢ ( X , T ) ∈ T c , − U ∈ T o dim U = dim U
Proof
Note that by ( 3.1.1 ) (3.1.1) ( 3.1.1 ) ( U , T ∣ U ) ∈ T − (U, T_{|U}) \in \mathcal T^- ( U , T ∣ U ) ∈ T − and by ( 3.1.2 ) (3.1.2) ( 3.1.2 ) we have ( U ‾ , T ∣ U ‾ ) ∈ T c , − (\overline U, T_{|\overline U}) \in \mathcal T^{c,-} ( U , T ∣ U ) ∈ T c , − . Consider a chain Z 0 ⊂ … ⊂ Z n , Z i ∈ T ∣ U c , − Z_0 \subset \ldots \subset Z_n, Z_i \in T^{c,-}_{|U} Z 0 ⊂ … ⊂ Z n , Z i ∈ T ∣ U c , − . Now take the closure of these sets in X X X to get the chain Z ‾ 0 ⊆ … ⊆ Z ‾ n , Z ‾ i ∈ T c \overline Z_0 \subseteq \ldots \subseteq \overline Z_n, \overline Z_i \in T^{c} Z 0 ⊆ … ⊆ Z n , Z i ∈ T c . First, let's prove that Z i = Z ‾ i ∩ U Z_i=\overline Z_i \cap U Z i = Z i ∩ U :
U ∩ Z ‾ i = U ∩ ⋂ X i ⊇ Z i , X i ∈ T c X i = ⋂ X i ⊇ Z i , X i ∈ T c ( U ∩ X i ) = ⋂ U ∩ X i ⊇ U ∩ Z i , X i ∈ T c ( U ∩ X i ) = ⋂ X i ′ ⊇ Z i , X i ′ ∈ T ∣ U c X i ′ = Z i since ( Z i ∈ T ∣ U c ) U \cap \overline Z_i = U \cap \bigcap_{X_i \supseteq Z_i, X_i \in T^c} X_i = \\
\bigcap_{X_i \supseteq Z_i, X_i \in T^c} (U \cap X_i) = \bigcap_{U \cap X_i \supseteq U \cap Z_i, X_i \in T^c} (U \cap X_i)= \\
\bigcap_{X_i' \supseteq Z_i, X_i' \in T^c_{|U}} X_i' = Z_i \text{ since } (Z_i \in T^c_{|U}) U ∩ Z i = U ∩ X i ⊇ Z i , X i ∈ T c ⋂ X i = X i ⊇ Z i , X i ∈ T c ⋂ ( U ∩ X i ) = U ∩ X i ⊇ U ∩ Z i , X i ∈ T c ⋂ ( U ∩ X i ) = X i ′ ⊇ Z i , X i ′ ∈ T ∣ U c ⋂ X i ′ = Z i since ( Z i ∈ T ∣ U c )
Next, Z ‾ i ∈ T ∣ U ‾ c , − \overline Z_i \in T^{c,-}_{|\overline U} Z i ∈ T ∣ U c , − . It's closed simply because U ‾ ⊆ X \overline U \subseteq X U ⊆ X . If Z ‾ i \overline Z_i Z i was reducible, that is Z ‾ i = X 1 ∪ X 2 , X 1 , 2 ⊂ Z ‾ i ⟹ Z i = U ∩ Z ‾ i = ( U ∩ X 1 ) ∪ ( U ∩ X 2 ) ⟹ ( X 1 ⊇ U ) ∨ ( X 2 ⊇ U ) ⟹ ( X 1 = X ‾ 1 = U ‾ ) ∨ ( X 2 = X ‾ 2 = U ‾ ) \overline Z_i = X_1 \cup X_2, X_{1,2} \subset \overline Z_i \implies Z_i=U \cap \overline Z_i = (U \cap X_1) \cup (U \cap X_2) \implies (X_1 \supseteq U) \vee (X_2 \supseteq U)\implies (X_1=\overline X_1 = \overline U) \vee (X_2=\overline X_2 = \overline U) Z i = X 1 ∪ X 2 , X 1 , 2 ⊂ Z i ⟹ Z i = U ∩ Z i = ( U ∩ X 1 ) ∪ ( U ∩ X 2 ) ⟹ ( X 1 ⊇ U ) ∨ ( X 2 ⊇ U ) ⟹ ( X 1 = X 1 = U ) ∨ ( X 2 = X 2 = U ) . But this is a contradiction since X 1 , 2 ⊂ Z ‾ i ⊆ U ‾ X_{1,2} \subset \overline Z_i \subseteq \overline U X 1 , 2 ⊂ Z i ⊆ U . So we establised:
Z i ∈ T ∣ U ‾ c , − Z_i \in T^{c, -}_{|\overline U} Z i ∈ T ∣ U c , −
So we know the chain Z 0 ⊂ … ⊂ Z n , Z i ∈ T ∣ U c , − Z_0 \subset \ldots \subset Z_n, Z_i \in T^{c,-}_{|U} Z 0 ⊂ … ⊂ Z n , Z i ∈ T ∣ U c , − implies the existence of chain Z ‾ 0 ⊂ … ⊂ Z ‾ n , Z ‾ i ∈ T ∣ U ‾ c , − \overline Z_0 \subset \ldots \subset \overline Z_n, \overline Z_i \in T^{c,-}_{|\overline U} Z 0 ⊂ … ⊂ Z n , Z i ∈ T ∣ U c , − . There could not be equivalence ⊆ \subseteq ⊆ in this chain as we know that Z i = U ∩ Z ‾ i Z_i = U \cap \overline Z_i Z i = U ∩ Z i so Z ‾ i = Z ‾ i + 1 ⟹ U ∩ Z ‾ i = U ∩ Z ‾ i + 1 ⟹ Z i = Z i + 1 \overline Z_i = \overline Z_{i+1} \implies U \cap \overline Z_i = U \cap \overline Z_{i+1} \implies Z_i = Z_{i+1} Z i = Z i + 1 ⟹ U ∩ Z i = U ∩ Z i + 1 ⟹ Z i = Z i + 1 .
Now we can go the other way round and project some chain X 0 ⊂ … ⊂ X n , X i ∈ T ∣ U ‾ c , − X_0 \subset \ldots \subset X_n, X_i \in T^{c,-}_{|\overline U} X 0 ⊂ … ⊂ X n , X i ∈ T ∣ U c , − to U U U by taking X i ′ = U ∩ X i X_i'=U \cap X_i X i ′ = U ∩ X i which will be closed and irreducible (the latter can be proving by assuming otherwise and taking closure similarly to the above). So we have a bijection of irreducible closed chains. The last thing we need to deal with is what if U ∩ X i = U ∩ X i + 1 U \cap X_i = U \cap X_{i+1} U ∩ X i = U ∩ X i + 1 ? Then we'll have a shorter chain of X i ′ X_i' X i ′ . If U ∩ X i = U ∩ X i + 1 U \cap X_i = U \cap X_{i+1} U ∩ X i = U ∩ X i + 1 then X i + 1 ∖ X i ∈ U ‾ ∖ U X_{i+1} \setminus X_i \in \overline U \setminus U X i + 1 ∖ X i ∈ U ∖ U . On the other hand X i + 1 = X i ∪ X i + 1 ∖ X i ‾ ⟹ X i + 1 ∈ T ∣ U ‾ c , − X i + 1 ∖ X i ‾ = X i + 1 X_{i+1}=X_i \cup \overline {X_{i+1} \setminus X_i} \overset{X_{i+1} \in T^{c,-}_{|\overline U}}\implies \overline {X_{i+1} \setminus X_i} = X_{i+1} X i + 1 = X i ∪ X i + 1 ∖ X i ⟹ X i + 1 ∈ T ∣ U c , − X i + 1 ∖ X i = X i + 1 . At the same time U ‾ ∖ U ∈ T ∣ U ‾ c \overline U \setminus U \in T^c_{|\overline U} U ∖ U ∈ T ∣ U c since U ∈ T o U \in T^o U ∈ T o . So we have X i + 1 = X i + 1 ∖ X i ‾ ⊆ U ‾ ∖ U ‾ = U ‾ ∖ U X_{i+1}=\overline {X_{i+1} \setminus X_i} \subseteq \overline{\overline U \setminus U}=\overline U \setminus U X i + 1 = X i + 1 ∖ X i ⊆ U ∖ U = U ∖ U . But it cannot be since X i + 1 ∩ U ≠ ∅ X_{i+1} \cap U \ne \empty X i + 1 ∩ U = ∅ .
So we have fully matched chains of irreducible in U U U and U ‾ \overline U U and dim U = dim U ‾ \dim U = \dim \overline U dim U = dim U
□ \square □
Proposition 3.3.8: Dimension of a variety with a principal vanishing ideal
∢ S n ( X , T ) ∈ T c , − dim X = n − 1 ⟺ ∃ f ∈ F ‾ [ x 1 , … , x n ] − : X = Z ( f ) \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&(X, T) \in \mathcal T^{c,-}\\
\hline
\\
&\dim X = n-1 \iff \exists f \in \overline F[x_1, \ldots, x_n]^-: X = Z(f)
\end{align*} ∢ S n ( X , T ) ∈ T c , − dim X = n − 1 ⟺ ∃ f ∈ F [ x 1 , … , x n ] − : X = Z ( f )
Proof
⟹ \implies ⟹
dim X = n − 1 ⟹ n − 1 = ( 3.3.3 ) dim A ( X ) = dim F ‾ [ x 1 , … , x n ] / I ( X ) = ( 3.3.4. b ) dim F ‾ [ x 1 , … , x n ] − ht I ( X ) ⟹ ht I ( X ) = 1 ⟹ ( 3.3.5 ) ∃ f ∈ F ‾ [ x 1 , … , x n ] : I ( X ) = ⟨ f ⟩ I ⟹ X = Z ( f ) \dim X = n-1 \implies n-1 \overset{(3.3.3)}= \dim A(X) = \\ \dim \overline F[x_1, \ldots, x_n] / I(X) \overset{(3.3.4.b)}= \\
\dim \overline F[x_1, \ldots, x_n] - \text{ht }I(X) \implies \text{ht }I(X) = 1 \overset{(3.3.5)}\implies \\
\exists f \in \overline F[x_1, \ldots, x_n]: I(X) = \lang f \rang_I \implies X = Z(f)\\ dim X = n − 1 ⟹ n − 1 = ( 3.3.3 ) dim A ( X ) = dim F [ x 1 , … , x n ] / I ( X ) = ( 3.3.4. b ) dim F [ x 1 , … , x n ] − ht I ( X ) ⟹ ht I ( X ) = 1 ⟹ ( 3.3.5 ) ∃ f ∈ F [ x 1 , … , x n ] : I ( X ) = ⟨ f ⟩ I ⟹ X = Z ( f )
⟸ \impliedby ⟸
f ∈ F ‾ [ x 1 , … , x n ] − ⟹ I ( X ) = ⟨ f ⟩ I ∈ P I ( F ‾ [ x 1 , … , x n ] ) ⟹ ( 3.3.6 ) ht I ( X ) = 1 ⟹ ( 3.3.4. b ) dim A ( X ) = dim F ‾ [ x 1 , … , x n ] / I ( X ) = n − 1 ⟹ ( 3.3.3 ) dim X = n − 1 f \in \overline F[x_1, \ldots, x_n]^- \implies I(X) = \lang f \rang_I \in \mathfrak P_I(\overline F[x_1, \ldots, x_n]) \overset{(3.3.6)}\implies \text{ht } I(X) = 1 \overset{(3.3.4.b)}\implies \dim A(X)=\dim \overline F[x_1, \ldots, x_n]/I(X) = n-1 \overset{(3.3.3)}\implies \dim X = n-1 f ∈ F [ x 1 , … , x n ] − ⟹ I ( X ) = ⟨ f ⟩ I ∈ P I ( F [ x 1 , … , x n ]) ⟹ ( 3.3.6 ) ht I ( X ) = 1 ⟹ ( 3.3.4. b ) dim A ( X ) = dim F [ x 1 , … , x n ] / I ( X ) = n − 1 ⟹ ( 3.3.3 ) dim X = n − 1
□ \square □
Proposition 3.3.9: Dimension of the local ring
∢ S n X ∈ V ( S n ) P ∈ X m P ∈ M I ( O X , P ) dim O X , P r = dim X \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&X \in \mathcal V(\mathbb S^n) \\
&P \in X \\
&\mathfrak m_{P} \in \mathfrak M_I(\mathcal O_{X,P})\\
\hline
\\
&\dim \mathcal O^r_{X,P} = \dim X
\end{align*} ∢ S n X ∈ V ( S n ) P ∈ X m P ∈ M I ( O X , P ) dim O X , P r = dim X
Proof
First let's note that chain of prime ideals in m P \mathfrak m_{P} m P corresponds to a chain of prime ideals in A ( X ) m P ≅ O X , P r A(X)_{\mathfrak m_{P}} \cong \mathcal O^r_{X,P} A ( X ) m P ≅ O X , P r so ht m P = dim O X , P r \text{ht }\mathfrak m_{P}=\dim \mathcal O^r_{X,P} ht m P = dim O X , P r . But from ( 3.3.4. b ) (3.3.4.b) ( 3.3.4. b ) we know that
ht m P + dim A ( X ) / m P = dim A ( X ) = dim X \text{ht }\mathfrak m_{P} + \dim A(X)/\mathfrak m_{P} = \dim A(X) = \dim X ht m P + dim A ( X ) / m P = dim A ( X ) = dim X
Next A ( X ) / m P ∈ F A(X)/\mathfrak m_{P} \in \mathcal F A ( X ) / m P ∈ F implies dim A ( X ) / m P = 0 \dim A(X)/\mathfrak m_{P} = 0 dim A ( X ) / m P = 0 (note we're talking about Krull dimension here) so
dim O X , P r = ht m P = ht m P + dim A ( X ) / m P = dim X \dim \mathcal O^r_{X,P}=\text{ht }\mathfrak m_{P}=\text{ht }\mathfrak m_{P} + \dim A(X)/\mathfrak m_{P}=\dim X dim O X , P r = ht m P = ht m P + dim A ( X ) / m P = dim X
□ \square □
Proposition 3.3.10: Non-singular point criterion
∢ S n X ∈ V ( S n ) P ∈ X m P ∈ M I ( O X , P ) P ∈ S ( X ) ⟺ dim X = dim F ‾ m P / m P 2 \begin{align*}
&\sphericalangle \\
&\mathbb S^n \\
&X \in \mathcal V(\mathbb S^n) \\
&P \in X \\
&\mathfrak m_{P} \in \mathfrak M_I(\mathcal O_{X,P})\\
\hline
\\
&P \in \cancel S(X) \iff \dim X=\dim_{\overline F} \mathfrak m_{P}/\mathfrak m^2_{P}
\end{align*} ∢ S n X ∈ V ( S n ) P ∈ X m P ∈ M I ( O X , P ) P ∈ S ( X ) ⟺ dim X = dim F m P / m P 2
Since O X , P / m P ≅ F F ‾ \mathcal O_{X,P}/\mathfrak m_{P} \cong_F \overline F O X , P / m P ≅ F F we know that dim O X , P / m P m P / m P 2 = dim F ‾ m P / m P 2 \dim_{\mathcal O_{X,P}/\mathfrak m_{P}} \mathfrak m_{P}/\mathfrak m^2_{P}=\dim_{\overline F} \mathfrak m_{P}/\mathfrak m^2_{P} dim O X , P / m P m P / m P 2 = dim F m P / m P 2
Proof
We'll make a proof for A n \mathbb A^n A n . Assume P = ( a 1 , … , a n ) ∈ A n P=(a_1, \ldots, a_n) \in \mathbb A^n P = ( a 1 , … , a n ) ∈ A n then by ( 3.1.8 ) (3.1.8) ( 3.1.8 ) we have a maximal ideal a P = ⟨ x − a 1 , … , x − a n ⟩ I \mathfrak a_{P}=\lang x-a_1, \ldots, x-a_n \rang_I a P = ⟨ x − a 1 , … , x − a n ⟩ I . Consider a homomorphism:
θ P : F ‾ [ x 1 , … , x n ] ⇝ M F ‾ n , f → ( ∂ f / ∂ x 1 ( P ) , … , ∂ f / ∂ x n ( P ) ) \theta_P: \overline F[x_1, \ldots, x_n] \rightsquigarrow_M \overline F^n, f \to (\partial f/\partial x_1(P), \ldots, \partial f/\partial x_n(P)) θ P : F [ x 1 , … , x n ] ⇝ M F n , f → ( ∂ f / ∂ x 1 ( P ) , … , ∂ f / ∂ x n ( P ))
If we consider a polynomal from a p : q ( x ) = ( x − a i ) p ( x ) \mathfrak a_p: q(x)=(x-a_i)p(x) a p : q ( x ) = ( x − a i ) p ( x ) then q ′ ( x ) = p ( x ) + ( x − a i ) p ′ ( P ) ⟹ q ′ ( P ) = p ( P ) q'(x)=p(x)+(x-a_i)p'(P) \implies q'(P)=p(P) q ′ ( x ) = p ( x ) + ( x − a i ) p ′ ( P ) ⟹ q ′ ( P ) = p ( P ) . So θ P ( a P ) = F ‾ n \theta_P(\mathfrak a_{P})=\overline F^n θ P ( a P ) = F n and ker θ P = a P 2 \ker \theta_P=\mathfrak a_{P}^2 ker θ P = a P 2 we have
a P / a P 2 ≅ ϕ P M F ‾ n
\mathfrak a_{P} / \mathfrak a^2_{P} \overset{\phi_P}\cong_M \overline F^n a P / a P 2 ≅ ϕ P M F n
Next, consider I ( X ) = ⟨ f 1 , … , f k ⟩ I I(X)= \lang f_1, \ldots, f_k \rang_I I ( X ) = ⟨ f 1 , … , f k ⟩ I and J : = ⟨ ∂ f i / ∂ x j ( P ) ⟩ I J:=\lang \partial f_i/\partial x_j(P) \rang_I J := ⟨ ∂ f i / ∂ x j ( P ) ⟩ I . Consider some function f i g ∈ I ( X ) f_ig \in I(X) f i g ∈ I ( X ) then θ P ( f i g ) = ( … , f i ′ ( P ) g ( P ) + f i ( P ) g ′ ( P ) , … ) = ( … , f i ′ ( P ) g ( P ) , … ) = g ( P ) J i \theta_P(f_ig)=(\ldots, f_i'(P)g(P) + f_i(P)g'(P), \ldots)=(\ldots, f_i'(P)g(P), \ldots) = g(P)J_i θ P ( f i g ) = ( … , f i ′ ( P ) g ( P ) + f i ( P ) g ′ ( P ) , … ) = ( … , f i ′ ( P ) g ( P ) , … ) = g ( P ) J i . So θ P ( I ( X ) ) = ⟨ J 1 , … , J k ⟩ M \theta_P(I(X)) = \lang J_1, \ldots, J_k \rang_M θ P ( I ( X )) = ⟨ J 1 , … , J k ⟩ M and thus rank J = dim F ‾ θ P ( I ( X ) ) \text{rank }J=\dim_{\overline F} \theta_P(I(X)) rank J = dim F θ P ( I ( X )) .
The image θ P ( I ( X ) ) \theta_P(I(X)) θ P ( I ( X )) is isomorphic to it's image under natural homomorphism in a P 2 / a P 2 \mathfrak a_P^2/\mathfrak a_P^2 a P 2 / a P 2 which is ( I ( X ) + a P 2 ) / a P 2 (I(X)+\mathfrak a_P^2)/\mathfrak a_P^2 ( I ( X ) + a P 2 ) / a P 2 . So rank J = dim F ‾ θ P ( I ( X ) ) = dim F ‾ ( I ( X ) + a P 2 ) / a P 2 \text{rank }J=\dim_{\overline F} \theta_P(I(X)) = \dim_{\overline F} (I(X) + \mathfrak a_{P}^2) / \mathfrak a_{P}^2 rank J = dim F θ P ( I ( X )) = dim F ( I ( X ) + a P 2 ) / a P 2 .
Consider M P = a P / I ( X ) M_P=\mathfrak a_P/I(X) M P = a P / I ( X ) - the image of a P \mathfrak a_P a P in A ( X ) A(X) A ( X ) under natural homomorphism. Then ∀ m ∈ M P 2 : ∃ x ∈ a P : m = ( x + I ( X ) ) 2 = x 2 + I ( X ) \forall m \in M_P^2: \exists x \in \mathfrak a_P: m = (x+I(X))^2= x^2 + I(X) ∀ m ∈ M P 2 : ∃ x ∈ a P : m = ( x + I ( X ) ) 2 = x 2 + I ( X ) so M P 2 = ( a p 2 + I ( X ) ) / I ( X ) M_P^2=(\mathfrak a_p^2+I(X))/I(X) M P 2 = ( a p 2 + I ( X )) / I ( X ) . Thus by third isomopshism theorem M P / M P 2 ≅ a P / ( a p 2 + I ( X ) ) M_P/M_P^2 \cong \mathfrak a_P/(\mathfrak a_p^2+I(X)) M P / M P 2 ≅ a P / ( a p 2 + I ( X )) . Next note that m ∈ M I ( O X , P ) \mathfrak m \in \mathfrak M_I(\mathcal O_{X, P}) m ∈ M I ( O X , P ) then m = ( A ( X ) ∖ M P ) − 1 M P , m 2 = ( A ( X ) ∖ M P ) − 1 M P 2 \mathfrak m = (A(X) \setminus M_P)^{-1}M_P, \mathfrak m^2 = (A(X) \setminus M_P)^{-1}M_P^2 m = ( A ( X ) ∖ M P ) − 1 M P , m 2 = ( A ( X ) ∖ M P ) − 1 M P 2 (we don't double − 1 -1 − 1 power because M P M_P M P is prime so any two functions not in M P M_P M P will still be not in M P M_P M P and obviously we can take one function to be 1 1 1 to get the whole ( A ( X ) ∖ M P ) − 1 (A(X) \setminus M_P)^{-1} ( A ( X ) ∖ M P ) − 1 ) so
m / m 2 ≅ a P / ( I ( X ) + a P 2 ) \mathfrak m / \mathfrak m^2 \cong \mathfrak a_P / (I(X) + \mathfrak a_P^2) m / m 2 ≅ a P / ( I ( X ) + a P 2 )
Finally
dim F ‾ m / m 2 + rank J = dim F ‾ a P / ( I ( X ) + a P 2 ) + dim F ‾ ( I ( X ) + a P 2 ) / a P 2 = dim F ‾ a P / a P 2 = n \dim_{\overline F} \mathfrak m / \mathfrak m^2 + \text{rank }J= \\
\dim_{\overline F} \mathfrak a_P / (I(X) + \mathfrak a_P^2) + \dim_{\overline F} (I(X) + \mathfrak a_{P}^2) / \mathfrak a_{P}^2 = \dim_{\overline F} \mathfrak a_{P} / \mathfrak a_{P}^2 = n dim F m / m 2 + rank J = dim F a P / ( I ( X ) + a P 2 ) + dim F ( I ( X ) + a P 2 ) / a P 2 = dim F a P / a P 2 = n
So
P ∈ S ( X ) ⟺ rank J = n − dim X ⟺ dim F ‾ m / m 2 = dim X P \in \cancel S(X) \iff \text{rank }J = n - \dim X \iff \\
\dim_{\overline F} \mathfrak m / \mathfrak m^2 = \dim X P ∈ S ( X ) ⟺ rank J = n − dim X ⟺ dim F m / m 2 = dim X
□ \square □
Rational points
Starting from this point we'll always assume that F ∈ F P F \in \mathcal F^{\mathcal P} F ∈ F P .
So far we always dealt with F ‾ \overline F F but it's natural when we want to consider varieties over F F F as well. This is where Galois theory comes very handy.
Recall that if we have a Galois extension E / G a l F E/_{Gal}F E / G a l F then we can define F F F as F = Fix Gal ( E / F ) E F=\text{Fix}_{\text{Gal}(E/F)}E F = Fix Gal ( E / F ) E . We'll soon see that many notions in algebraic geometry is Galois invariant, meaning we can quickly see how Galois automorphisms acts on these notions. So this is a good tool for analyzing the structure of varieties over F F F .
Notice that we always consider Galois extension F ‾ / F \overline F / F F / F since by defintion F ‾ /