3.4 Curves
def: Curve
∢ ( X : = P n , T : = Z ( P n ) ) ∈ T C ∈ T c ∩ X − dim C = 1 C ∈ C \begin{align*}
&\sphericalangle \\
&(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\
&C \in T^{c} \cap X^- \\
&\dim C = 1
\\
\hline
\\
&C \in \mathfrak C
\end{align*} ∢ ( X := P n , T := Z ( P n )) ∈ T C ∈ T c ∩ X − dim C = 1 C ∈ C
Function order at point
Proposition 3.4.1: Regular local ring at a smooth point of a curve is a discrete valuation ring
∢ ( X : = P n , T : = Z ( P n ) ) ∈ T C ∈ C P ∈ S ( C ) O C , P r ∈ R D V R \begin{align*}
&\sphericalangle \\
&(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\
&C \in \mathfrak C \\
&P \in \cancel S(C)
\\
\hline
\\
&\mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}}
\end{align*} ∢ ( X := P n , T := Z ( P n )) ∈ T C ∈ C P ∈ S ( C ) O C , P r ∈ R D V R
Proof
Recall that O C , P r : = { f g , f , g , ∈ S ( C ) d , g ( P ) ≠ 0 } \mathcal O^r_{C,P}:=\{\frac{f}{g}, f, g, \in S(C)_d, g(P)\ne 0\} O C , P r := { g f , f , g , ∈ S ( C ) d , g ( P ) = 0 } so it's a fraction of two polynomials with number of variables not greater than n n n and thus O C , P r ∈ R N \mathcal O^r_{C,P} \in \mathcal R^{\mathcal N} O C , P r ∈ R N .
Next since C ∈ T c ∩ X − C \in T^{c} \cap X^- C ∈ T c ∩ X − we know that I ( C ) ∈ P I ( F ‾ [ x 1 , … , x n ] ) I(C) \in \mathfrak P_I(\overline F[x_1, \ldots, x_n]) I ( C ) ∈ P I ( F [ x 1 , … , x n ]) so O C , P r ∈ R I D \mathcal O^r_{C,P} \in \mathcal R^{\mathcal {ID}} O C , P r ∈ R I D .
Then O C , P r ∈ R L \mathcal O^r_{C,P} \in \mathcal R^{\mathcal {L}} O C , P r ∈ R L since it's a localization by maximal ideal m P \mathfrak m_P m P .
By ( 3.3.9 ) (3.3.9) ( 3.3.9 ) dim O C , P r = dim C = 1 \dim \mathcal O^r_{C,P}=\dim C = 1 dim O C , P r = dim C = 1 . So we have
O C , P r ∈ R N ∩ R L ∩ R I D , dim O C , P r = 1 \mathcal O^r_{C,P} \in \mathcal R^{\mathcal N} \cap \mathcal R^{\mathcal {L}} \cap \mathcal R^{\mathcal {ID}}, \dim \mathcal O^r_{C,P}=1 O C , P r ∈ R N ∩ R L ∩ R I D , dim O C , P r = 1
Next, since P ∈ S ( C ) P \in \cancel S(C) P ∈ S ( C ) by ( 3.3.10 ) dim O C , P r / m P m P / m P 2 = 1 (3.3.10) \dim_{\mathcal O^r_{C,P}/\mathfrak m_P}\mathfrak m_P / \mathfrak m_P^2=1 ( 3.3.10 ) dim O C , P r / m P m P / m P 2 = 1 .
So by ( 2.7.21 ) (2.7.21) ( 2.7.21 ) we have O C , P r ∈ R D V R \mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}} O C , P r ∈ R D V R
□ \square □
def: Function order at point p
∢ ( X : = P n , T : = Z ( P n ) ) ∈ T C ∈ C P ∈ S ( C ) ⟹ O C , P r ∈ R D V R v − discrete valuation f ∈ F ( O C , P r ) = F ( C ) ord P f : = v ( f ) \begin{align*}
&\sphericalangle \\
&(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\
&C \in \mathfrak C \\
&P \in \cancel S(C) \implies \mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}} \\
&v - \text{discrete valuation} \\
&f \in \mathfrak F(\mathcal O^r_{C,P})=F(C)\\
\hline
\\
&\text{ord}_Pf:=v(f)
\end{align*} ∢ ( X := P n , T := Z ( P n )) ∈ T C ∈ C P ∈ S ( C ) ⟹ O C , P r ∈ R D V R v − discrete valuation f ∈ F ( O C , P r ) = F ( C ) ord P f := v ( f )
Recall that maximal ideal in O C , P r \mathcal O^r_{C,P} O C , P r is a set of functions that vanish on P P P . Thus ord P f \text{ord}_Pf ord P f is a multiplicity of root of function f f f at point P P P .
Obviously poles (roots of denominator) counts as order with negative sign
From ( 2.7.21 ) (2.7.21) ( 2.7.21 ) we know that there's a uniformizer t t t with ord P t = 1 \text{ord}_Pt=1 ord P t = 1 such that ⟨ f ⟩ I = ⟨ t ord P ( f ) ⟩ I ⟺ f = u t ord P ( f ) , u ∈ O C , P r ∗ = { f / g , f , g ∈ S ( C ) d , f ( P ) ≠ 0 , g ( P ) ≠ 0 } \lang f \rang_I=\lang t^{\text{ord}_P(f)} \rang_I \iff f = u t^{\text{ord}_P(f)}, u \in O^{r*}_{C,P}=\{f/g, f, g \in S(C)_d, f(P) \ne 0,g(P) \ne 0\} ⟨ f ⟩ I = ⟨ t ord P ( f ) ⟩ I ⟺ f = u t ord P ( f ) , u ∈ O C , P r ∗ = { f / g , f , g ∈ S ( C ) d , f ( P ) = 0 , g ( P ) = 0 }
Proposition 3.4.2: Number of points non-zero and negative order
∢ ( X : = P n , T : = Z ( P n ) ) ∈ T C ∈ C ∩ S f ∈ F ( C ) , f ≠ 0 ∣ P : ord P f ≠ 0 ∣ < ∞ ∣ P : ord P f < 0 ∣ = 0 ⟹ f ∈ F ‾ \begin{align*}
&\sphericalangle \\
&(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\
&C \in \mathfrak C \cap \cancel S \\
&f \in F(C), f \ne 0 \\
\hline
\\
&\begin{align*}
&|P: \text{ord}_Pf\ne 0| < \infty \hspace{0.5cm} \tag{a}\\
&|P: \text{ord}_Pf< 0| =0 \implies f \in \overline F\hspace{0.5cm} \tag{b}\\
\end{align*}
\end{align*} ∢ ( X := P n , T := Z ( P n )) ∈ T C ∈ C ∩ S f ∈ F ( C ) , f = 0 ∣ P : ord P f = 0∣ < ∞ ∣ P : ord P f < 0∣ = 0 ⟹ f ∈ F ( a ) ( b )
Example: Order of function for ellpitic curve
Consider a curve over P 2 \mathbb P^2 P 2 :
C : y 2 z = x 3 + x z 2 , C: y^2z = x^3+xz^2, C : y 2 z = x 3 + x z 2 ,
We want to explore the order of a function
f ( x , y , z ) : = y − x z f(x,y,z):=\frac{y-x}{z} f ( x , y , z ) := z y − x
at different points.
First let's check if this curve have some singular points:
J : = ( − 2 x 2 − z 2 2 y z y 2 − 2 z x ) J:=
\begin{pmatrix}
-2x^2-z^2 & 2yz & y^2-2zx
\end{pmatrix} \\ J := ( − 2 x 2 − z 2 2 yz y 2 − 2 z x )
The singular point would be some projective point [ x , y , z ] [x, y, z] [ x , y , z ] that is not [ 0 , 0 , 0 ] [0,0,0] [ 0 , 0 , 0 ] (which is prohibited in projective space) such that rank J < 2 − 1 = 1 \text{rank } J<2-1=1 rank J < 2 − 1 = 1 that is J = ( 0 0 0 ) J=(0\, 0\, 0) J = ( 0 0 0 ) . So if 2 y z = 0 2yz = 0 2 yz = 0 it means that either y = 0 y = 0 y = 0 or z = 0 z=0 z = 0 . If z = 0 z=0 z = 0 then − 2 x 2 − z 2 = 0 ⟹ x = 0 , y 2 − 2 z x = 0 ⟹ y = 0 -2x^2-z^2=0 \implies x = 0, y^2 - 2zx = 0 \implies y=0 − 2 x 2 − z 2 = 0 ⟹ x = 0 , y 2 − 2 z x = 0