Skip to main content

3.4 Curves

def: Curve

(X:=Pn,T:=Z(Pn))TCTcXdimC=1CC\begin{align*} &\sphericalangle \\ &(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\ &C \in T^{c} \cap X^- \\ &\dim C = 1 \\ \hline \\ &C \in \mathfrak C \end{align*}

Function order at point

Proposition 3.4.1: Regular local ring at a smooth point of a curve is a discrete valuation ring

(X:=Pn,T:=Z(Pn))TCCPS(C)OC,PrRDVR\begin{align*} &\sphericalangle \\ &(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\ &C \in \mathfrak C \\ &P \in \cancel S(C) \\ \hline \\ &\mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}} \end{align*}

Proof

Recall that OC,Pr:={fg,f,g,S(C)d,g(P)0}\mathcal O^r_{C,P}:=\{\frac{f}{g}, f, g, \in S(C)_d, g(P)\ne 0\} so it's a fraction of two polynomials with number of variables not greater than nn and thus OC,PrRN\mathcal O^r_{C,P} \in \mathcal R^{\mathcal N}.

Next since CTcXC \in T^{c} \cap X^- we know that I(C)PI(F[x1,,xn])I(C) \in \mathfrak P_I(\overline F[x_1, \ldots, x_n]) so OC,PrRID\mathcal O^r_{C,P} \in \mathcal R^{\mathcal {ID}}.

Then OC,PrRL\mathcal O^r_{C,P} \in \mathcal R^{\mathcal {L}} since it's a localization by maximal ideal mP\mathfrak m_P.

By (3.3.9)(3.3.9) dimOC,Pr=dimC=1\dim \mathcal O^r_{C,P}=\dim C = 1. So we have

OC,PrRNRLRID,dimOC,Pr=1\mathcal O^r_{C,P} \in \mathcal R^{\mathcal N} \cap \mathcal R^{\mathcal {L}} \cap \mathcal R^{\mathcal {ID}}, \dim \mathcal O^r_{C,P}=1

Next, since PS(C)P \in \cancel S(C) by (3.3.10)dimOC,Pr/mPmP/mP2=1(3.3.10) \dim_{\mathcal O^r_{C,P}/\mathfrak m_P}\mathfrak m_P / \mathfrak m_P^2=1.

So by (2.7.21)(2.7.21) we have OC,PrRDVR\mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}}

\square

def: Function order at point p

(X:=Pn,T:=Z(Pn))TCCPS(C)    OC,PrRDVRvdiscrete valuationfF(OC,Pr)=F(C)ordPf:=v(f)\begin{align*} &\sphericalangle \\ &(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\ &C \in \mathfrak C \\ &P \in \cancel S(C) \implies \mathcal O^r_{C,P} \in \mathcal R^{\mathcal {DVR}} \\ &v - \text{discrete valuation} \\ &f \in \mathfrak F(\mathcal O^r_{C,P})=F(C)\\ \hline \\ &\text{ord}_Pf:=v(f) \end{align*}
note

Recall that maximal ideal in OC,Pr\mathcal O^r_{C,P} is a set of functions that vanish on PP. Thus ordPf\text{ord}_Pf is a multiplicity of root of function ff at point PP.

Obviously poles (roots of denominator) counts as order with negative sign

note

From (2.7.21)(2.7.21) we know that there's a uniformizer tt with ordPt=1\text{ord}_Pt=1 such that fI=tordP(f)I    f=utordP(f),uOC,Pr={f/g,f,gS(C)d,f(P)0,g(P)0}\lang f \rang_I=\lang t^{\text{ord}_P(f)} \rang_I \iff f = u t^{\text{ord}_P(f)}, u \in O^{r*}_{C,P}=\{f/g, f, g \in S(C)_d, f(P) \ne 0,g(P) \ne 0\}

Proposition 3.4.2: Number of points non-zero and negative order

(X:=Pn,T:=Z(Pn))TCCSfF(C),f0P:ordPf0<P:ordPf<0=0    fF\begin{align*} &\sphericalangle \\ &(X:=\mathbb P^n, T := \mathcal Z(\mathbb P^n)) \in \mathcal T \\ &C \in \mathfrak C \cap \cancel S \\ &f \in F(C), f \ne 0 \\ \hline \\ &\begin{align*} &|P: \text{ord}_Pf\ne 0| < \infty \hspace{0.5cm} \tag{a}\\ &|P: \text{ord}_Pf< 0| =0 \implies f \in \overline F\hspace{0.5cm} \tag{b}\\ \end{align*} \end{align*}

Example: Order of function for ellpitic curve

Consider a curve over P2\mathbb P^2:

C:y2z=x3+xz2,C: y^2z = x^3+xz^2,

We want to explore the order of a function

f(x,y,z):=yxzf(x,y,z):=\frac{y-x}{z}

at different points.

First let's check if this curve have some singular points:

J:=(2x2z22yzy22zx)J:= \begin{pmatrix} -2x^2-z^2 & 2yz & y^2-2zx \end{pmatrix} \\

The singular point would be some projective point [x,y,z][x, y, z] that is not [0,0,0][0,0,0] (which is prohibited in projective space) such that rank J<21=1\text{rank } J<2-1=1 that is J=(000)J=(0\, 0\, 0). So if 2yz=02yz = 0 it means that either y=0y = 0 or z=0z=0. If z=0z=0 then 2x2z2=0    x=0,y22zx=0    y=0-2x^2-z^2=0 \implies x = 0, y^2 - 2zx = 0 \implies y=0 so we got the point [0,0,0][0,0,0] which is not in projective space. So z0z \ne 0 but then y=0y=0 and we can use similar statements to figure out that it's impossible as well. So we established that CC is non-singular in every point. In particular every local ring of regular functions is a discrete valuation ring.

Now back to the function ff. First note, that this function has the same level of homogeneity in numerator and denominator and thus is well-defined on the curve.

Let's figure out at which points PP we have ordPf0\text{ord}_Pf \ne 0. Obviously this happens if either yx=0y-x=0 or z=0z=0. If z=0z=0 then from the equation of the curve x=0x=0 and so the only point that works is P4=[0,1,0]P_4 = [0,1,0]. On the other hand if z0z \ne 0 we can assume z=1z=1 and y=xy=x so x2=x3+x    x=w1,w2,w3,w1=0,w2=ei2π/3,w3=ei2π/3x^2=x^3+x \implies x = w_1, w_2, w_3, w_1 = 0, w_2=e^{i2\pi/3}, w_3=e^{-i2\pi/3}. So we have 4 points with non-zero order:

P1=[w1,w1,1]P2=[w2,w2,1]P3=[w3,w3,1]P4=[0,1,0]P_1 = [w_1,w_1,1] \\ P_2 = [w_2,w_2,1] \\ P_3 = [w_3,w_3,1] \\ P_4 = [0,1,0] \\

Consider some point Pi=[wi,wi,1]P_i=[w_i, w_i, 1]. We want to find maximal ideal in OPir\mathcal O^r_{P_i}. Recall this is mPi={f/g:f,gF[x,y,z]/I(C)d,f(P)=0,g(P)0}\mathfrak m_{P_i}=\{f/g: f, g \in \overline F[x, y, z]/I(C)_d, f(P)=0, g(P) \ne 0\}.

According to (3.1.8)(3.1.8) we have maximal ideal MPi=xwi,ywi,z1I,MPiF[x,y,x],MPi={fF[x,y,z]:f(P)=0}M_{P_i}=\lang x-w_i, y -w_i, z-1 \rang_I, M_{P_i} \subseteq \overline F[x, y, x], M_{P_i} = \{f \in \overline F[x, y, z]: f(P)=0\}.

Note that this is still not mPi\mathfrak m_{P_i} for three reasons: the polynomials are not homogeneous and the level of homogeneity in the numerator and denominator are different and the polynomials are in F[x,y,z]\overline F[x,y,z] rather than in F[x,y,z]/I(C)\overline F[x,y,z]/I(C). We can fix this by homogeneization similar to (3.3.2)(3.3.2). That is we map xx/z,yy/z,zz/z=1x \to x/z, y \to y/z, z \to z/z=1 So we have:

mPi=x/zwi,y/zwi,z/z1I=xwizz,ywizzI\mathfrak m_{P_i} = \lang x/z-w_i, y/z-w_i, z/z - 1 \rang_I = \lang \frac{x-w_iz}{z}, \frac{y-w_iz}{z} \rang_I

But the curve CC is non-singular in every point that means that mPi\mathfrak m_{P_i} is generated by a single element - uniformizer. Which of xwizz\frac{x-w_iz}{z} and ywizz\frac{y-w_iz}{z} we should eliminate? Consider equation for CC in the form:

y2z2=x3z3+xz=xzz2+x2z2    xz=y2z2z2z2+x2\frac{y^2}{z^2}=\frac{x^3}{z^3}+\frac{x}{z}=\frac{x}{z} \frac{z^2 + x^2}{z^2} \implies \\ \frac{x}{z}=\frac{y^2}{z^2}\cdot \frac{z^2}{z^2+x^2}

Note that z2z2+x2OPir\frac{z^2}{z^2+x^2} \in \mathcal O^r_{P_i} and it's actually a unit in this ring. So for w1=0w_1=0 we know that mP1=yzI\mathfrak m_{P_1} = \lang \frac{y}{z} \rang_I. The same holds for for w2,w3w_2, w_3 (requires some calculations that we'll skip) so we have

ordPi(ywiz)/z=1ordPi(xwiz)/z=2\text{ord}_{P_i}(y-w_iz)/z=1 \\ \text{ord}_{P_i}(x - w_iz)/z=2 \\

Next

ordPif=ordPi(ywizzxwizz)=ordPi(ywizz)+ordPi(1xwizywiz)\text{ord}_{P_i}f=\text{ord}_{P_i}(\frac{y-w_iz}{z}-\frac{x-w_iz}{z})= \\ \text{ord}_{P_i}(\frac{y-w_iz}{z})+\text{ord}_{P_i}(1-\frac{x-w_iz}{y-w_iz}) \\

Consider

g(x,y,z):=xwizywiz=x/zwiy/zwi=(x/zwi)(y/z+wi)(y/z)2wi2=(x/zwi)(y/z+wi)(x/z)3+x/zwi2=(x/zwi)(y/z+wi)(x/z)3+x/zwi3wi=(x/zwi)(y/z+wi)(x/zwi)((x/z)2+wix/z+wi2)+x/zwi=(y/z+wi)(x/z)2+wix/z+wi2+1 g(x,y,z):=\frac{x-w_iz}{y-w_iz}=\frac{x/z-w_i}{y/z-w_i}= \\ \frac{(x/z-w_i)(y/z+w_i)}{(y/z)^2-w_i^2}=\frac{(x/z-w_i)(y/z+w_i)}{(x/z)^3+x/z-w_i^2}=\\ \frac{(x/z-w_i)(y/z+w_i)}{(x/z)^3+x/z-w_i^3-w_i}=\\ \frac{(x/z-w_i)(y/z+w_i)}{(x/z-w_i)((x/z)^2+w_ix/z+w_i^2)+x/z-w_i} = \\ \frac{(y/z+w_i)}{(x/z)^2+w_ix/z+w_i^2 +1}

By plugging wiw_i we can see that the denominator doesn't go to 00 so

g(wi,wi,1)=0    ordPi(1xwizywiz)=0    ordPif=1g(w_i,w_i,1)=0 \implies \text{ord}_{P_i}(1-\frac{x-w_iz}{y-w_iz}) = 0 \implies \\ \text{ord}_{P_i}f = 1

Now consider point P4=[0,1,0]P_4 = [0,1,0]. MP4=x,y1,zIM_{P_4}=\lang x, y-1, z \rang_I and mP4=x/y,z/yI\mathfrak m_{P_4}=\lang x/y, z/y \rang_I. We can eliminate z/yz/y:

z/y=(x/y)3+(x/y)(z2/y2)=(x/y)(x2/y2+z2/y2)    x2+z2y2OP4rmP4=x/yIz/y=(x/y)^3+(x/y)(z^2/y^2)=(x/y)(x^2/y^2+z^2/y^2) \overset{\frac{x^2+z^2}{y^2} \in \mathcal O^r_{P_4}}\implies \\ \mathfrak m_{P_4}=\lang x/y \rang_I

Unlike the previous cases we cannot use the relation z/y=(x/y)(x2/y2+z2/y2)z/y=(x/y)(x^2/y^2+z^2/y^2) to determine the order of z/yz/y because (x2/y2+z2/y2)1OP4r(x^2/y^2+z^2/y^2)^{-1}\notin \mathcal O^r_{P_4}. So let's find the order in a generic way:

z/y=g(x,y,z)xa/ya    g(x,y,z)=ya1zxaz/y = g(x,y,z)x^a/y^a \implies g(x, y, z)=\frac{y^{a-1}z}{x^a}

If we consider a=1,2a=1, 2 we'll have gOP4rg \notin \mathcal O^r_{P_4}. For a=3a=3:

g(x,y,z)=y2zx3=y2zy2zxz2=y2y2xzOP4rg(x, y, z)=\frac{y^2z}{x^3}=\frac{y^2z}{y^2z-xz^2}=\frac{y^2}{y^2-xz} \in \mathcal O^r_{P_4} ord P4z/y=3ord P4x/y=1ord P4x/z=13=2ord P4y/z=3ord P4f=ord P4xyz=ord P4yz(x/y1)=ord P4(y/z)=3\text{ord }_{P_4} z/y=3 \\ \text{ord }_{P_4} x/y=1 \\ \text{ord }_{P_4} x/z=1-3=-2 \\ \text{ord }_{P_4} y/z=-3 \\ \text{ord }_{P_4}f=\text{ord }_{P_4}\frac{x-y}{z} = \text{ord }_{P_4}\frac{y}{z}(x/y-1)=\\ \text{ord }_{P_4}(y/z)=-3

Finally we have

ord P1f=1ord P2f=1ord P3f=1ord P4f=3\text{ord }_{P_1} f= 1 \\ \text{ord }_{P_2} f= 1 \\ \text{ord }_{P_3} f= 1 \\ \text{ord }_{P_4} f= -3 \\

Notice that orders sum to 0. As we'll see later it's no coincidence.

Example: Singular curve

Consider a curve

C2:y2z=x3+x2z,C_2:y^2z = x^3+x^2z, J2:=(2x22xz2yzy2x2)J2([0,0,1])=(000)J_2:= \begin{pmatrix} -2x^2-2xz & 2yz & y^2-x^2 \end{pmatrix} \\ J_2([0,0,1])=\begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \\

So this curve has a singular point [0,0,1][0,0,1] and so it's not a non-singular curve and O[0,0,1]r\mathcal O^r_{[0,0,1]} is not a discrete valuation ring.

def: Ramification index

PnC1,C2C/FC1=S(C1),C2=S(C2)ϕ:C1RatC2,ϕconstPC1tϕ(P)uniformizer in F(C2)Feϕ(P)=ordP(ϕtϕ(P)),\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C/F \\ &C_1 = \cancel S(C_1), C_2 = \cancel S(C_2) \\ &\phi: C_1 \rightsquigarrow_{Rat} C_2, \phi \ne \text{const} \\ &P \in C_1 \\ &t_{\phi(P)} - \text{uniformizer in } F(C_2)_F \\ \hline \\ &e_{\phi}(P)=\text{ord}_P(\phi^*t_{\phi(P)}), \end{align*}

If eϕ(P)=1e_{\phi}(P)=1 we say that ϕ\phi is unramified at P, otherwise it's ramified.

Example: Ramification index

Consider

ϕ:P1/RP1/R,ϕ([x,y])[x3(xy)2,y5]\phi: \mathbb P^1/\R \to \mathbb P^1/\R, \phi([x,y]) \mapsto [x^3(x-y)^2, y^5]

We'd like to consider point [0,1][0,1] and it's preimage ϕ1[0,1]={[0,1],[1,1]}\phi^{-1}[0,1]=\{[0,1], [1,1]\}

For point P=[0,1]P=[0,1] we'll have

ϕ(P)=[0,1]t[0,1]=x/yϕt[0,1]=x3(xy)2y5eϕ(P)=ordPϕtϕ(P)=3\phi(P)= [0,1] \\ t_{[0,1]}=x/y \\ \phi^*t_{[0,1]}=\frac{x^3(x-y)^2}{y^5} \\ e_\phi(P)=\text{ord}_{P}\phi^*t_{\phi(P)}=3

For point Q=[1,1]Q=[1,1] we'll have

ϕ(Q)=[0,1]t[0,1]=x/yϕt[0,1]=x3(xy)2y5t[1,1]=xyyeϕ(Q)=ordPϕtϕ(P)=ord[1,1]x3(xy)2y5=2\phi(Q)= [0,1] \\ t_{[0,1]}=x/y \\ \phi^*t_{[0,1]}=\frac{x^3(x-y)^2}{y^5} \\ t_{[1,1]}=\frac{x-y}{y} \\ e_\phi(Q)=\text{ord}_{P}\phi^*t_{\phi(P)}=\text{ord}_{[1,1]}\frac{x^3(x-y)^2}{y^5}=2

Thus we have

Pϕ1([0,1])eϕ(P)=5\sum_{P \in \phi^{-1}([0,1]) } e_\phi(P) = 5

Notice that it matches the degree of polynomials in ϕ\phi. We'll see later that it's no coincidence.

Morphisms and rational maps

Proposition 3.4.3: Smooth curve rational map is a morphism

PnCCC=S(C)(X,Tc,OX)Vϕ:CRatXϕ:CRspX\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S(C) \\ &(X, T^c, \mathcal O_X) \in \mathcal V \\ &\phi: C \rightsquigarrow_{Rat}X \\ \hline \\ &\phi: C \rightsquigarrow_{Rsp}X \end{align*}

Proof

Assume ϕ=[ϕ0,,ϕk]\phi = [\phi_0, \ldots, \phi_k] Consider some point PP and define m:=miniordPϕim:=\min_i \text{ord}_P\phi_i. Then [tmϕ0(P),,tmϕk(P)][t^{-m}\phi_0(P), \ldots, t^{-m}\phi_k(P)] has at least one component of order 00 which is thus not equal to 0 and point is well defined.

Since point PP is arbitrary we proved that ϕ\phi is a morphism.

\square

Example: Rational map to P1\mathbb P^1

Consider C/FC/F and f=g/hF(C)Ff = g/h \in F(C)_F then ϕ:=[f,1]\phi:=[f, 1] is a rational map on the set U:=CZ(h)U:=C \setminus Z(h). We can extend this map to points of Z(h)Z(h) by defining ϕ(P):=[h(P)f(P),1h(P)]=[1,0]\phi(P):=[h(P)\cdot f(P), 1\cdot h(P)]=[1,0]. So

ϕ(P)={[f(P),1],fOC,Pr[1,0],fOC,Pr\phi(P) = \begin{cases} [f(P), 1], f \in \mathcal O^r_{C,P} \\ [1,0], f \notin \mathcal O^r_{C,P} \end{cases}

def: Rational map degree

PnC1,C2C/Fϕ:C1RatC2degϕ:={[F(C1)F:ϕF(C2)F],if ϕconst0,if ϕ=const\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C/F \\ &\phi: C_1 \rightsquigarrow_{Rat} C_2 \\ \hline \\ &\deg\phi:=\begin{cases} [F(C_1)_F:\phi^*F(C_2)_F], \text{if } \phi \ne \text{const} \\ 0, \text{if } \phi = \text{const} \end{cases} \end{align*}
note

We call ϕ\phi separable and purely inseparable iff the field extension has the same property

Example: Rational map degree

Consider

ϕ:P1/RP1/R,ϕ([x,y])[x3(xy)2,y5]\phi: \mathbb P^1/\R \to \mathbb P^1/\R, \phi([x,y]) \mapsto [x^3(x-y)^2, y^5]

Then F(P1)=F(x/y)F(\mathbb P^1)=F(x/y) so ϕF(P1)=F(x3(xy)2y5)\phi^*F(\mathbb P^1)=F(\frac{x^3(x-y)^2}{y^5}) and thus

t:=x/yx3(xy)2y5=t3(t22t+1)=t52t4+t3    degϕ=[F(x/y):F(x3(xy)2y5)]=5t:= x/y \\ \frac{x^3(x-y)^2}{y^5}=t^3(t^2-2t+1)=t^5-2t^4+t^3 \implies \\ \deg \phi=[F(x/y):F(\frac{x^3(x-y)^2}{y^5})]=5

\square

Proposition 3.4.4: Rational map of degree one is an isomopshism of smooth curves

PnC1,C2CCi=S(Ci)ϕ:C1RatC2degϕ=1ϕ:C1C2\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C \\ &C_i = \cancel S(C_i) \\ &\phi: C_1 \rightsquigarrow_{Rat} C_2 \\ &\deg \phi = 1 \\ \hline \\ &\phi: C_1 \cong C_2 \end{align*}

Proposition 3.4.5: Morphism between curves

PnC1,C2Cϕ:C1RspC2(ϕ=const)(ϕ(C1)=C2)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C \\ &\phi: C_1 \rightsquigarrow_{Rsp} C_2 \\ \hline \\ &(\phi = \text{const}) \vee (\phi(C_1)=C_2) \end{align*}

Proposition 3.4.6: Degree and ramification index

PnC1,C2C/FCi=S(Ci)ϕ:C1RatC2degϕ>0(ϕconst)QC2Pϕ1(Q)eϕ(P)=degϕ\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C/F \\ &C_i = \cancel S(C_i)\\ &\phi: C_1 \rightsquigarrow_{Rat} C_2 \\ &\deg \phi > 0 (\phi \ne \text{const}) \\ &Q \in C_2 \\ \hline \\ &\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)=\deg \phi \end{align*}

Example: Degree and ramification index

Consider

ϕ:P1/RP1/R,ϕ([x,y])[x3(xy)2,y5]\phi: \mathbb P^1/\R \to \mathbb P^1/\R, \phi([x,y]) \mapsto [x^3(x-y)^2, y^5]

From examples above we know that degϕ=5\deg \phi = 5 and Pϕ1([0,1])eϕ(P)=5\sum_{P \in \phi^{-1}([0,1]) } e_\phi(P) = 5.

\square

We already defined a pullback on ringed spaces and so on affine varieties. But we'll further need the inverse of pullback. The problem with the inverse is that ϕ:F(C2)F(C1)\phi_*: F(C_2) \to F(C_1) is not surjective so we cannot take ϕ1\phi_*^{-1} rightaway. To overcome this problem we use so-called norm map:

NF(C1)/ϕF(C2):F(C1)ϕF(C2),fσGal(F(C1)/ϕF(C2))σ(f)N_{F(C_1)/\phi^*F(C_2)}: F(C_1) \to \phi^*F(C_2), f \mapsto \prod_{\sigma \in \text{Gal}(F(C_1)/\phi^*F(C_2))}\sigma(f)

Thus image of ff under the norm map will be Galois invariant and will belong to ϕF(C2)\phi^*F(C_2) so we can make the following definition:

def: Pushforward

PnC1,C2Cϕ:C1RatC2ϕ:=(ϕ)1NF(C1)/ϕF(C2)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2 \in \mathfrak C\\ &\phi: C_1 \rightsquigarrow_{Rat} C_2 \\ \hline \\ &\phi_*:=(\phi^*)^{-1} \circ N_{F(C_1)/\phi^*F(C_2)} \end{align*}

Proposition 3.4.7: Function field is a finite separable extension of uniformizer

Pn,FFP,char F=pPCC/FPS(C)tP uniformizer in FF(C)F/AF(tP)F[F(C)F:F(tP)F]<F(C)F/F(tP)F\begin{align*} &\sphericalangle \\ &\mathbb P^n, F \in \mathcal F^{\mathcal P}, \text{char }F = p \in \mathfrak P \\ &C \in \mathfrak C/F \\ &P \in \cancel S(C) \\ &t_P - \text{ uniformizer in }F \\ \hline \\ &\begin{align*} &F(C)_F/_AF(t_P)_F \hspace{0.5cm} \tag{a}\\ &[F(C)_F:F(t_P)_F] < \infty \hspace{0.5cm} \tag{b}\\ &F(C)_F/_{\boxminus}F(t_P)_F \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

By (3.3.4)(3.3.4) trdeg F(C)F/F=1\text{trdeg }F(C)_F/F=1. On the other hand it's obvious that tPt_P is transcendental over FF so trdeg F(tP)F/F=1\text{trdeg }F(t_P)_F/F=1, finally tPF(C)Ft_P \subseteq F(C)_F so F(C)F/AF(tP)FF(C)_F/_AF(t_P)_F

b.

Since F(C)F/AF(tP)FF(C)_F/_AF(t_P)_F and F(C)FF(C)_F is finitely generated over FF (and hence over F(tP)FF(t_P)_F) then [F(C)F:F(tP)F]<[F(C)_F:F(t_P)_F] < \infty

c.

Consider some zF(C)Fz \in F(C)_F, we know that fF(tP)FF(C)Ff \in \overline {F(t_P)_F}_{F(C)_F}, that is zz is algebraic over F(tP)FF(t_P)_F so there is q(x):=polF(tP)F(a)=i,jaijtPixjq(x):=\mathfrak{pol}_{F(t_P)_F}(a)=\sum_{i,j}a_{ij}t_P^ix^j (note that we can clear denominator in tPt_P just by multiplying by least common factor of all denominators). Consider polynomial

q(t,x)=i,jaijtixjq(t,x)=\sum_{i,j}a_{ij}t^ix^j

If there's a term i,jaijtixj\sum_{i,j}a_{ij}t^ix^j with j0(modp)j \ne 0 \pmod p then q(t,x)/x0\partial q(t,x)/\partial x \ne 0 and so by (2.9.9.b)(2.9.9.b) q(x)F(tP)F,[x]    zF(tP)F,q(x) \in F(t_P)_{F,\boxminus}[x] \implies z \in F(t_P)_{F,\boxminus}.

Assume otherwise that each term has j=0(modp)j = 0 \pmod p that is q(t,x)=r(t,xp)q(t,x)=r(t,x^p). Note that since FFPF \in \mathcal F^{\mathcal P} by (2.9.12.c)(2.9.12.c)every aij=bijpa_ij=b_{ij}^p then by (2.10.3)(2.10.3) we have r(tp,xp)=s(t,x)pr(t^p,x^p)=s(t,x)^p for some ss. So we can write qq in terms of mod power pp of tt as follows:

q(t,x)=r(t,xp)=k=0p1sk(t,x)ptkq(t,x)=r(t,x^p)=\sum_{k=0}^{p-1}s_k(t,x)^pt^k

Consider q(tp,z)q(t_p, z) and note that

ordPsk(tP,z)ptPk=pordPsk(tP,z)+k=k(modp)\text{ord}_Ps_k(t_P,z)^pt_P^k=p \cdot \text{ord}_Ps_k(t_P,z) + k = k \pmod p

Since q(tP,z)=0q(t_P,z)=0 and each term sk(tP,z)pzks_k(t_P,z)^pz^k has different order it's impossible to have anything but

s0(tP,z)==sp1(tP,z)=0s_0(t_P,z) = \ldots = s_{p-1}(t_P,z) = 0

(i.e. terms can't cancel out since the have different order of vanishing and can be represented as utkut^k).

Obviously k\exists k such that sk(t,x)s_k(t,x) depends on xx (otherwise q(t,x)q(t,x) is independent of xx). Now degxsk(t,x)1/pq(t,x)\deg_x s_k(t,x) \le 1/p\cdot q(t,x) and sk(tP,z)=0s_k(t_P,z)=0 which contradicts to q(t,x)q(t,x) being minimal.

\square

def: Frobenius morphism

FFPchar F=pPPnCC/FCρ:=Z(fρ:fI(C))ρ:CCρ,[x0,,xn][x0p,,xnp]\begin{align*} &\sphericalangle \\ &F \in \mathcal F^{\mathcal P} \\ &\text{char }F = p \in \mathfrak P \\ &\mathbb P^n \\ &C \in \mathfrak C/F \\ &C^{\rho}:=Z({f^{\rho}: f \in I(C})) \\ \hline \\ &\rho_{\rightsquigarrow}: C \to C^{\rho}, [x_0, \ldots, x_n] \mapsto [x_0^{p}, \ldots, x_n^p] \end{align*}
note

Recall that we denote fϕ:=ϕ(a0)+ϕ(a1)x+f^{\phi}:=\phi(a_0)+\phi(a_1)x + \ldots and ρ(a):=ap\rho(a):=a^p thus fρ:=a0p+a1px+f^{\rho}:=a_0^p+a_1^px+ \ldots.

note

By (2.3.10)(2.3.10) indeed ρ:CCp\rho: C \to C^{p} if we map [x0,,xn][x0p,,xnp][x_0, \ldots, x_n] \mapsto [x_0^{p}, \ldots, x_n^p]

note

We can apply Frobenius several times to get:

ρk:CCpk,[x0,,xn][x0pk,,xnpk]\rho_{\rightsquigarrow}^k: C \to C^{p^k}, [x_0, \ldots, x_n] \mapsto [x_0^{p^k}, \ldots, x_n^{p^k}]

Proposition 3.4.8: Degree of Frobenius morphism

FFPchar F=pPPnCC/F(ρk)F(Cρk)F=F(C)Fpk:={fpk:fF(C)F}ρkpurely inseparabledegρk=pk\begin{align*} &\sphericalangle \\ &F \in \mathcal F^{\mathcal P} \\ &\text{char }F = p \in \mathfrak P \\ &\mathbb P^n \\ &C \in \mathfrak C/F \\ \hline \\ &\begin{align*} &(\rho_{\rightsquigarrow}^{k})^*F(C^{\rho^k})_F=F(C)^{p^k}_F := \{f^{p^k}: f \in F(C)_F\} \hspace{0.5cm} \tag{a}\\ &\rho_{\rightsquigarrow}^k - \text{purely inseparable} \hspace{0.5cm} \tag{b}\\ &\deg \rho_{\rightsquigarrow}^k = p^k \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

(ρk)F(Cρk)F=f(x0pk,,xnpk)g(x0pk,,xnpk)=FFP(f(x0,,xn)g(x0,,xn))pk=F(C)Fpk(\rho_{\rightsquigarrow}^{k})^*F(C^{\rho^k})_F=\frac{f(x_0^{p^k}, \ldots, x_n^{p^k})}{g(x_0^{p^k}, \ldots, x_n^{p^k})} \overset{F \in \mathcal F^{\mathcal P}} = \\ (\frac{f(x_0, \ldots, x_n)}{g(x_0, \ldots, x_n)})^{p^k} = F(C)^{p^k}_F

b.

From (a)(a) it follows that we consider extension F(C)/(ρk)F(Cρk)F=F(C)/F(C)FpkF(C)/(\rho_{\rightsquigarrow}^{k})^*F(C^{\rho^k})_F=F(C) / F(C)^{p^k}_F. Note that αF(C):αpkF(C)Fpk\forall \alpha \in F(C): \alpha^{p^k} \in F(C)^{p^k}_F so by (2.9.10.a)(2.9.10.a) the extension is purely inseparable

c.

Take some non-singular point PCP \in C and uniformizer tPt_P. Note that F(C)/F(tP)F(C)/_{\boxminus}F(t_P) by (3.4.7)(3.4.7) and F(C)/F(C)FpkF(C)/_{\Box}F(C)^{p^k}_F by (b)(b). Then we'll have the following tower field:

Fields tower

Fields tower

So the extension F(C)F/F(C)Fpk(tP)F(C)_F/F(C)^{p^k}_F(t_P) is both separable and purely inseparable so by (2.9.11)(2.9.11) we have F(C)F=F(C)Fpk(tP)F(C)_F=F(C)^{p^k}_F(t_P). Thus from (a)(a)

degρk=[F(C)Fpk(tP):F(C)Fpk]\deg \rho^k=[F(C)^{p^k}_F(t_P):F(C)^{p^k}_F]

Obviously tPF(C)    tPpkF(C)Fpkt_P \in F(C) \implies t_P^{p^k} \in F(C)^{p^k}_F. So all we need to show is tPpk1F(C)Fpkt_P^{p^{k}-1} \notin F(C)^{p^k}_F. Assume otherwise fF(C):fpk=tPpk1\exists f \in F(C): f^{p^k}=t_P^{p^{k}-1} then

pk1=ordPtPpk1=pkordPf    ordPf=(pk1)/p=pk11/pp^{k}-1=\text{ord}_Pt_P^{p^{k}-1}=p^k\text{ord}_Pf \implies \\ \text{ord}_Pf = (p^{k}-1)/p=p^{k-1}-1/p

But that's impossible because order is integer.

\square

Divisors

def: Divisor

PnCCD:=PYnP(P),nPZ,PY:nP0<DDiv(C)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ \hline \\ &D: = \sum_{P \in Y} n_P(P), n_P \in \Z, |P \in Y: n_P \ne 0| \lt \infty \\ &D \in \text{Div}(C) \end{align*}
note

Divisor if a formal sum of nP(P)n_P(P) that is it's just a mapping CZC \to \Z where each point is assigned some integer. Additional property is the number of non-zero points is finite (i.e. the sum is finite)

note

Div(C)\text{Div}(C) is a actually a free abelian group where we define operation ++ in the natural way (nPn_P at each point is summed)

The Galois group Gal(F/F)\text{Gal}(\overline F/F) acts on Div(C)\text{Div}(C) in the following way:

Dσ=nP(Pσ) D^\sigma=\sum n_P(P^\sigma)

We say that divisor DD is defined over FF (D/FD/F) if σGal(F/F):Dσ=D\forall \sigma \in \text{Gal}(\overline F/F): D^{\sigma}=D. We use the notation DivF(C)\text{Div}_F(C) for a group of divisors defined over FF.

note

If D=n1(P1)++nk(Pk)D = n_1(P_1)+ \ldots +n_k(P_k) and we say that D/FD/F it doesn't necessary mean that Piσ=PiP_i^\sigma=P_i, we just require that they're permuted in the right way. For example divisor 2((1+i,1i))+2((1i,1+i))2((1+i, 1-i))+2((1-i, 1+i)) is defined over R\R.

def: Degree of divisor

PnCCD=PCnP(P)degD:=PCnP\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &D = \sum_{P \in C} n_P(P) \\ \hline \\ &\deg D:=\sum_{P \in C} n_P \end{align*}

def: Divisors of degree 0 subgroup

PnCCDiv0(C):={DDiv0(C):degD=0}\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ \hline \\ &\text{Div}^0(C) :=\{D \in \text{Div}^0(C): \deg D = 0\}\end{align*}

def: Divisor of a function

PnCCC=S(C)fF(C)div(f):=PCordP(f)(P)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ &f \in F(C)^*\\ \hline \\ &\text{div}(f):=\sum_{P \in C}\text{ord}_P(f)(P) \end{align*}

Example: Divisors on elliptic curve

Assume charF2\text{char}F \ne 2, let e1,e2,e3Fe_1, e_2, e_3 \in \overline F and consider:

C:y2=(xe1)(xe2)(xe3)C: y^2 = (x-e_1)(x-e_2)(x-e_3)

If we consider a projective equation and assume z=0z=0 then we'll get one point in C:P=[0,1,0]C: P_{\infty}=[0,1,0].

Define Pi=(ei,0)P_i=(e_i, 0) and consider fi(x)=xeif_i(x)=x-e_i. It can have two points of non-zero order: PiP_i and PP_\infty (for the latter note that projective version is xzeiz\frac{x-ze_i}{z}). For the point PiP_i we'll have mPi=(xzei)/z,y/zI\mathfrak m_{P_i}=\lang (x-ze_i)/z, y/z \rang_I. We already established in previous examples that in this case ordPifi=2\text{ord}_{P_i}f_i=2.

For P{P_\infty} we estblished in examples above:

ordPx/y=1ordPz/y=3ordPz/x=ordPz/y+ordPy/x=31=2ordPfi=ordPxeizz=ordPxeizy+ordPy/z=ordPx/y+ordP1eizx+ordPy/z=1+03=2\text{ord}_{P_{\infty}}x/y=1 \\ \text{ord}_{P_{\infty}}z/y=3 \\ \text{ord}_{P_{\infty}}z/x=\text{ord}_{P_{\infty}}z/y + \text{ord}_{P_{\infty}}y/x = 3-1=2 \\ \text{ord}_{P_{\infty}}f_i=\text{ord}_{P_{\infty}} \frac{x-e_iz}{z}=\text{ord}_{P_{\infty}} \frac{x-e_iz}{y}+\text{ord}_{P_{\infty}}y/z= \\ \text{ord}_{P_{\infty}} x/y+\text{ord}_{P_{\infty}} 1-\frac{e_iz}{x}+\text{ord}_{P_{\infty}}y/z=1+0-3=-2

So we have:

div(xei)=2(Pi)2(P)\text{div}(x-e_i)=2(P_i)-2(P_\infty)

Now for function yy we have three zeros PiP_i and some unknown order at PP_\infty. We established in the examples above that order of zeros are 1 and just above that ordPz/y=3\text{ord}_{P_{\infty}}z/y=3 so we have:

div(y)=(P1)+(P2)+(P3)3(P)\text{div}(y)=(P_1)+(P_2)+(P_3)-3(P_\infty)

\square

It's easy to check that

div(fσ)=(div(f))σ\text{div}(f^{\sigma})=(\text{div}(f))^{\sigma}

In particular fF(C)F    div(f)DivF(C)f \in F(C)_F \implies \text{div}(f) \in \text{Div}_F(C)

Also note that ordP\text{ord}_P is a discrete valuation so

div:F(C)GDiv(C)\text{div}: F(C)^* \rightsquigarrow_G \text{Div}(C)

def: Principal divisor

PnCCC=S(C)DDiv(C)fF(C):D=div(f)DprinicipalDDiv(C)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ &D \in \text{Div}(C) \\ &\exists f \in F(C)^*: D = \text{div}(f)\\ \hline \\ &D - \text{prinicipal} \\ &D \in \text{Div}_{\lang \rang}(C) \end{align*}

def: Equivalent divisors

PnCCC=S(C)D1,D2Div(C)D1D2Div(C)D1D2\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ &D_1, D_2 \in \text{Div}(C) \\ &D_1 - D_2 \in \text{Div}_{\lang \rang}(C) \\ \hline \\ &D_1 \sim D_2 \end{align*}

def: Picard group

PnCCC=S(C)Pic(C):=Div(C)/Div(C)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ \hline \\ &\text{Pic}(C):=\text{Div}(C)/\text{Div}_{\lang \rang}(C) \end{align*}

We denote PicF(C)\text{Pic}_F(C) the divisors in PicF(C)\text{Pic}_F(C) that are fixed by the Galois group. In general PicF(C)DivF(C)/DivF,(C)\text{Pic}_F(C) \ne \text{Div}_F(C)/\text{Div}_{F,\lang \rang}(C).

Proposition 3.4.9: Zero divisor and constant funtion

PnCCC=S(C)fF(C)div(f)=0    fF\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ &f \in F(C)^* \\ \hline \\ &\text{div}(f)=0 \iff f \in \overline F^* \end{align*}

Proof

    \implies

div(f)=0\text{div}(f)=0 implies ff doesn't have poles. Consider a rational map CP1C \to \mathbb P^1:

ϕ(P)={[f(P),1],fOC,Pr[1,0],fOC,Pr\phi(P) = \begin{cases} [f(P), 1], f \in \mathcal O^r_{C,P} \\ [1,0], f \notin \mathcal O^r_{C,P} \end{cases}

By (3.4.3)(3.4.3) it's a morphism and it's not surjective since ff doesn't have poles so by (3.4.5)(3.4.5) it's constant.

    \impliedby

Obvious.

\square

In the previous sections we discussed pullbacks and pushforwards of function fields. Now we define it for divisors. Assume ϕ:C1RatC2\phi: C_1 \rightsquigarrow_{Rat}C_2:

ϕ:Div(C2)Div(C1),(Q)Pϕ1(Q)eϕ(P)(P)ϕ:Div(C1)Div(C2),(P)ϕ(P)(P)\phi^*:\text{Div}(C_2) \to \text{Div}(C_1), (Q) \mapsto \sum_{P \in \phi^{-1}(Q)}e_\phi(P)(P) \\ \phi_*:\text{Div}(C_1) \to \text{Div}(C_2), (P) \mapsto \phi(P)(P)

Proposition 3.4.10: Pullbacks, pushforwards and divisors

PnC1,C2,C3CCi=S(Ci)ϕ:C1RatC2,ϕconstfF(C1)gF(C2)DDiv(C2)ψ:C2RatC3,ϕconstdeg(ϕD)=(degϕ)(degD)ϕ(div(g))=div(ϕg),deg(ϕD)=degD,DDiv(C2)ϕ(div(f))=div(ϕf)ϕϕacts as multiplication by degϕ(ψϕ)=ψϕ,(ψϕ)=ψϕ\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C_1, C_2, C_3 \in \mathfrak C \\ &C_i = \cancel S (C_i) \\ &\phi: C_1 \rightsquigarrow_{Rat} C_2, \phi \ne \text{const} \\ &f \in F(C_1)^* \\ &g \in F(C_2)^* \\ &D \in \text{Div}(C_2) \\ &\psi: C_2 \rightsquigarrow_{Rat} C_3, \phi \ne \text{const} \\ \hline \\ &\begin{align*} &\deg(\phi^*D)=(\deg \phi)(\deg D) \hspace{0.5cm} \tag{a}\\ & \phi^*(\text{div}(g))=\text{div}(\phi^*g), \hspace{0.5cm} \tag{b}\\ & \deg(\phi_*D) = \deg D , \forall D \in \text{Div}(C_2)\hspace{0.5cm} \tag{c}\\ & \phi_*(\text{div}(f))=\text{div}(\phi_*f)\hspace{0.5cm} \tag{d}\\ & \phi_*\circ \phi^* \text{acts as multiplication by } \deg \phi\hspace{0.5cm} \tag{e}\\ & (\psi \circ \phi)^*=\psi^* \circ \phi^*, (\psi \circ \phi)_*=\psi_* \circ \phi_*\hspace{0.5cm} \tag{f}\\ \end{align*} \end{align*}

Proof

a.

Easy to check using defintions and (3.4.6)(3.4.6)

b.

ordP(ϕf)=ordP(ϕtϕ(P)ordϕ(P)f)=eϕ(P)ordϕ(P)f\text{ord}_P(\phi^*f)=\text{ord}_P(\phi^*t_{\phi(P)}^{\text{ord}_{\phi(P)}f})=e_{\phi}(P)\cdot \text{ord}_{\phi(P)}f

c.

Obvious from definition

d, e, f

Left as an exercise

\square

Proposition 3.4.11: Degree of a principal divisor

PnCCC=S(C)fF(C)deg(div(f))=0\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &C = \cancel S (C) \\ &f \in F(C)^* \\ \hline \\ &\deg(\text{div}(f))=0 \end{align*}

Proof

Consider a morphism ϕ:CP1\phi: C \to \mathbb P^1

ϕ(P)={[f(P),1],fOC,Pr[1,0],fOC,Pr\phi(P) = \begin{cases} [f(P), 1], f \in \mathcal O^r_{C,P} \\ [1,0], f \notin \mathcal O^r_{C,P} \end{cases}

Then from definitions div(f)=ϕ((0)())\text{div}(f)=\phi^*((0) - (\infty)) (that is we are summing orders where ff is 0 (zeros) and substracting orders where it's a pole).

degdiv(f)=degϕ((0)())=degϕdeg((0)())=0\deg\text{div}(f)=\deg\phi^*((0) - (\infty))=\deg \phi \cdot \deg((0) - (\infty)) = 0

\square

Differentials

def: Space of differential forms

PnCCΩC:={df:fF(C)}1. d(f+g)=df+dg2. d(fg)=gdf+fdg3. da=0,aF\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ \hline \\ & \Omega_C:=\{df: f \in F(C)\} \\ & 1.\ d(f+g) = df + dg \\ & 2.\ d(fg) = gdf + fdg \\ & 3.\ da = 0, \forall a \in \overline{F} \\ \end{align*}
note

ΩC\Omega_C is a F\overline F-vector space

Eventually we want to arrive at the definition of divisor of a differential. So let's start with pullback

def: Pull-back differential

ϕ:fidxi(ϕfi)d(ϕxi)\phi^*: \sum f_idx_i \mapsto \sum (\phi^*f_i)d(\phi^*x_i)

Proposition 3.4.12: Differentials properties

PnCCPCtPuniformizerp:=char FΩCMF(C),dimF(C)ΩC=1ωΩC    !gF(C):ω=gdtP,g:=ω/dtPordP(ω):=ordP(ω/dtP) is independent of tPordP(ω)0 for finitely many P(p=0)(pordP(x))    ordP(fdx)=ordP(f)+ordP(x)1ordPf0    ordPdf/dt0\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &P \in C \\ &t_P - \text{uniformizer} \\ &p:= \text{char }F \\ \hline \\ &\begin{align*} &\Omega_C \in \mathcal M_{F(C)}, \dim_{F(C)} \Omega_C = 1 \hspace{0.5cm} \tag{a}\\ & \omega \in \Omega_C \implies \exists! g \in F(C): \omega=gdt_P, g:=\omega/dt_P\hspace{0.5cm} \tag{b}\\ &\text{ord}_P(\omega):=\text{ord}_P(\omega/dt_P) \text{ is independent of } t_P \hspace{0.5cm} \tag{c}\\ &\text{ord}_P(\omega) \ne 0 \text{ for finitely many } P \hspace{0.5cm} \tag{d}\\ &(p = 0) \vee (p \nmid \text{ord}_P(x)) \implies \text{ord}_P(f\cdot dx) = \text{ord}_P(f)+\text{ord}_P(x)-1 \hspace{0.5cm} \tag{e}\\ &\text{ord}_Pf \ge 0 \implies \text{ord}_Pdf/dt \ge 0 \hspace{0.5cm} \tag{f}\\ \end{align*} \end{align*}

def: Differential divisor

PnCCωΩCdiv(ω):=PCordPω(P)\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &\omega \in \Omega_C \\ \hline \\ &\text{div}(\omega) := \sum_{P \in C}\text{ord}_P \omega(P) \end{align*}

Since by (3.4.12.a)(3.4.12.a) for every differentials ω1,ω2\omega_1, \omega_2 we have ω1=fω2,fF(C)\omega_1= f\omega_2, f \in F(C) then:

div(ω1)div(ω2)=div(f)\text{div}(\omega_1)-\text{div}(\omega_2) = \text{div}(f)

So each differential is in the same coset of the Picard group and we can make the following definition:

def: Canonical divisor

PnCCDivΩ(C)the coset of Picard group for differential divisorsDDivΩ(C)canonical divisor\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ & \\ \hline \\ &\text{Div}_\Omega(C) - \text{the coset of Picard group for differential divisors} \\ &D \in \text{Div}_\Omega(C) - \text{canonical divisor} \end{align*}

Rieman-Roch theorem

We're almost ready to formulate the Rieman-Roch theorem. But before that couple more definitions.

def: Divisors partial order

PnCCD1=np1(P),D2=np2(P)PY:np1np2D1D2\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &D_1 = \sum{n_{p_1}}(P), D_2 = \sum{n_{p_2}}(P) \\ &\forall P \in Y: n_{p_1} \ge n_{p_2} \\ \hline \\ &D_1 \ge D_2 \end{align*}

def: L(D)

PnCCDDiv(C)L(D):={fF(C):div(f)+D0}{0}\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ & D \in \text{Div}(C) \\ \hline \\ &L(D) := \{f \in F(C)^*: \text{div}(f) + D \ge 0\} \cup \{0\} \end{align*}

It can be proved that L(D)L(D) is a finite dimenional F\overline F-vector space.

We finally can state Rieman-Roch theorem. We'll use it extensively further for proving that there exist functions for some predefined divisor.

Theorem 3.4.13: Rieman-Roch

PnCCDωDivΩ(C)g:DDiv(C):dimFL(D)dimFL(DωD)=degDg+1\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ & D_\omega \in \text{Div}_\Omega(C) \\ \hline \\ &\exists g: \forall D \in \text{Div}(C): \dim_{\overline F} L(D)-\dim_{\overline F} L(D_\omega-D) = \deg D - g + 1 \end{align*}

def: Genus of a curve

PnCCgen(C) is a g from Rieman-Roch\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ \hline \\ &\text{gen}(C) \text{ is a } g \text{ from Rieman-Roch} \end{align*}

Corrolary 3.4.14: Divisors properties from Rieman-Roch

PnCCDωDivΩ(C)g:=gen(C)dimL(Dω)=gdegDω=2g2degD>2g2    dimL(D)=degDg+1gen(P1)=0\begin{align*} &\sphericalangle \\ &\mathbb P^n \\ &C \in \mathfrak C \\ &D_\omega \in \text{Div}_\Omega(C) \\ &g:=\text{gen}(C) \\ \hline \\ &\begin{align*} & \dim L(D_\omega)=g\hspace{0.5cm} \tag{a}\\ & \deg D_\omega = 2g-2\hspace{0.5cm} \tag{b}\\ & \deg D > 2g-2 \implies \dim L(D)=\deg D - g+1\hspace{0.5cm} \tag{c}\\ & \text{gen}(\mathbb P^1)=0 \hspace{0.5cm} \tag{d}\\ \end{align*} \end{align*}

Proof

a.

Note that L(0)L(0) is a set of functions with no poles so by (3.4.2.b)(3.4.2.b) we have L(0)=F    dimL(0)=1L(0)=\overline F \implies \dim L(0)=1. Thus taking Rieman-Roch with D=0D=0:

dimL(0)dimL(Dω)=deg0g+1    dimL(Dω)=g\dim L(0)-\dim L(D_\omega)=\deg 0 -g + 1 \implies \\ \dim L(D_\omega) = g

b.

Take D=DωD=D_\omega:

dimL(Dω)dimL(0)=degDωg+1    degDω=2g2\dim L(D_\omega)-\dim L(0)=\deg D_\omega -g + 1 \implies \\ \deg D_\omega = 2g-2

c.

First consider some arbitrary DD' with degD<0\deg D'<0 and some fL(D),f0f \in L(D'), f \ne 0. Then by (3.4.11)(3.4.11) we have 0=deg(div(f))deg(D)=degD    degD00=\deg(\text{div}(f))\ge \deg(-D')=-\deg D' \implies \deg D' \ge 0. That means that L(D)={0}L(D')=\{0\}. So we established:

degD<0    dimL(D)=0\deg D'<0 \implies \dim L(D')=0

Since degDω=2g2\deg D_\omega=2g-2 and degD>2g2\deg D > 2g-2 we have deg(DωD)<0    dimL(DωD)=0\deg (D_\omega - D) <0 \implies \dim L(D_\omega - D)=0 and so

dimL(D)=degDg+1\dim L(D)=\deg D - g+1

d.

Consider a differential dxΩP1dx \in \Omega_{\mathbb P^1}:

αF:ordαdx=ordαd(xα)=(3.4.12.e)ordα(xα)1=0orddx=ordx1=2\forall \alpha \in \overline F: \text{ord}_\alpha dx=\text{ord}_\alpha d(x-\alpha)\overset{(3.4.12.e)}=\text{ord}_\alpha (x-\alpha)-1=0 \\ \text{ord}_{\infty} dx = \text{ord}_{\infty} x-1 = -2

So div(dx)=2()\text{div}(dx)=-2(\infty). Next for any ωΩP1\omega \in \Omega_{\mathbb P^1} by (3.4.12.b)(3.4.12.b) deg(div(ω))=deg(div(dx))=2\deg(\text{div}(\omega))=\deg(\text{div}(dx))=-2.

In particular there cannot be any differential with div(ω)0\text{div}(\omega)\ge 0 and so dimL(Dω)=0\dim L(D_\omega)=0. From (a)(a) we get g=0g=0.

\square