4.3 Pairings
Torsion subgroups
def: m-torsion subgroup
∢ ( E , O ) ∈ E m ∈ N E [ m ] : = { P ∈ E : [ m ] P = 0 } \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
&m \in \N
\\
\hline
\\
&E[m]:=\{P \in E: [m]P=0\}
\end{align*} ∢ ( E , O ) ∈ E m ∈ N E [ m ] := { P ∈ E : [ m ] P = 0 }
The m m m -torsion is essentially the elements of order m m m and order d d d if d ∣ m d \mid m d ∣ m .
In fact it's exactly the same as ker [ m ] \ker [m] ker [ m ] ,
def: Torsion subgroup
∢ ( E , O ) ∈ E E tors : = ⋃ m ∈ N E [ m ] \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
\hline
\\
&E_{\text{tors}}:=\bigcup_{m \in \N} E[m]
\end{align*} ∢ ( E , O ) ∈ E E tors := m ∈ N ⋃ E [ m ]
Proposition 4.3.2: m-torsion structure
∢ p = char F ( E , O ) / F ∈ E p ∤ m ( including p = 0 ) E [ m ] ≅ Z / m Z × Z / m Z \begin{align*}
&\sphericalangle \\
&p = \text{char } F \\
&(E, O)/F \in \mathcal E \\
&p \nmid m (\text{including } p=0)
\\
\hline
\\
&E[m]\cong \Z/m\Z \times \Z/m\Z
\end{align*} ∢ p = char F ( E , O ) / F ∈ E p ∤ m ( including p = 0 ) E [ m ] ≅ Z / m Z × Z / m Z
Proof
By ( 4.2.9 ) (4.2.9) ( 4.2.9 ) [ m ] [m] [ m ] is separable so by ( 4.2.7 ) (4.2.7) ( 4.2.7 ) and ( 4.2.10 ) (4.2.10) ( 4.2.10 ) :
m 2 = deg [ m ] = ∣ ker [ m ] ∣ ≡ ∣ E [ m ] ∣ m^2=\deg[m]=|\ker [m]|\equiv|E[m]| m 2 = deg [ m ] = ∣ ker [ m ] ∣ ≡ ∣ E [ m ] ∣
Note that for every d ∣ m d \mid m d ∣ m we also have ∣ E [ d ] ∣ = d 2 |E[d]|=d^2 ∣ E [ d ] ∣ = d 2 so by ( 2.2.39 ) (2.2.39) ( 2.2.39 ) we have:
E [ m ] ≅ Z / m Z × Z / m Z E[m]\cong \Z/m\Z \times \Z/m\Z E [ m ] ≅ Z / m Z × Z / m Z
□ \square □
Though ( E , O ) (E,O) ( E , O ) is defined over F F F it still has points in F ‾ \overline{F} F and so does E [ m ] E[m] E [ m ] . It might be surprising that that we can grow m m m and get arbitrary large order of E [ m ] E[m] E [ m ] given that we count points of E F q E_{\mathbb F_q} E F q in ( 4.2.11 ) (4.2.11) ( 4.2.11 ) . But again we're considering points in E = E F ‾ E=E_{\overline{\mathbb F}} E = E F and this group has infinite number of points since F ‾ \overline {\mathbb F} F is infinite.
Now assume m m m is prime and we'll rename it to r r r to signify that its primeness. So we have E [ r ] ≅ Z / r Z × Z / r Z E[r]\cong \Z/r\Z \times \Z/r\Z E [ r ] ≅ Z / r Z × Z / r Z . In this case the only non-trivial subgroups would have order r r r since only r ∣ r 2 r \mid r^2 r ∣ r 2 . Note that each Z / r Z \Z/r\Z Z / r Z is cyclic in this case any element will generate the whole group. Moreover, the same is true for any subgroup of order r r r in E [ r ] E[r] E [ r ] . We'll have the following r + 1 r+1 r + 1 subgroups of order r r r :
⟨ ( 0 , 1 ) ⟩ G ⟨ ( 1 , 0 ) ⟩ G ⟨ ( 1 , 1 ) ⟩ G ⟨ ( 1 , 2 ) ⟩ G … ⟨ ( 1 , r − 1 ) ⟩ G \lang (0,1) \rang_G \\
\lang (1,0) \rang_G \\
\lang (1,1) \rang_G \\
\lang (1,2) \rang_G \\
\ldots \\
\lang (1,r-1) \rang_G \\ ⟨( 0 , 1 ) ⟩ G ⟨( 1 , 0 ) ⟩ G ⟨( 1 , 1 ) ⟩ G ⟨( 1 , 2 ) ⟩ G … ⟨( 1 , r − 1 ) ⟩ G
Why is this list exaustive and each group is unique? Because if we take any element ( a , b ) (a, b) ( a , b ) then if a = 0 a =0 a = 0 , the element is a part of ⟨ ( 0 , 1 ) ⟩ G \lang (0,1) \rang_G ⟨( 0 , 1 ) ⟩ G , if b = 0 b=0 b = 0 it will be a part of ⟨ ( 1 , 0 ) ⟩ G \lang (1,0) \rang_G ⟨( 1 , 0 ) ⟩ G . In all other cases this element would be a part of one and exactly of the last r − 1 r-1 r − 1 groups.
Note that ( 0 , 0 ) (0,0) ( 0 , 0 ) is part of every group, other than that each element is unique to its own group. We can cross-check it by counting orders r ( r + 1 ) − r = r 2 r(r+1)-r=r^2 r ( r + 1 ) − r = r 2 (− r -r − r for removing ( 0 , 0 ) (0,0) ( 0 , 0 ) duplicates). This gives the following visualization for subgroups of order r r r in r r r -torsion:
Of course we use here integers but on elliptic curve this will be elliptic curve points.
Propostion 4.3.1: Weil conjectures for elliptic curves
∢ q = p n , p ∈ P ( E , O ) / F q ∈ E t : = ∣ E F q ∣ − q − 1 χ ( x ) : = x 2 − t x + q α , β : χ ( α ) = χ ( β ) = 0 ϕ : = ρ ⇝ n ∣ α ∣ = ∣ β ∣ = q ∣ E F q k ∣ = q k + 1 − α k − β k ϕ 2 − [ t ] ∘ ϕ + [ q ] = [ 0 ] \begin{align*}
&\sphericalangle \\
&q=p^n, p \in \mathfrak P \\
&(E,O)/\mathbb F_q \in \mathcal E \\
&t:= |E_{\mathbb F_q}|-q-1 \\
&\chi(x):=x^2-tx+q \\
& \alpha, \beta: \chi(\alpha)=\chi(\beta)=0 \\
& \phi:=\rho_{\rightsquigarrow}^n \\
\hline
\\
&\begin{align*}
&|\alpha|=|\beta|=\sqrt q \hspace{0.5cm} \tag{a}\\
&|E_{\mathbb F_{q^k}}|=q^k+1-\alpha^k-\beta^k \hspace{0.5cm} \tag{b}\\
&\phi^2 - [t]\circ \phi + [q] = [0] \hspace{0.5cm} \tag{c}\\
\end{align*}
\end{align*} ∢ q = p n , p ∈ P ( E , O ) / F q ∈ E t := ∣ E F q ∣ − q − 1 χ ( x ) := x 2 − t x + q α , β : χ ( α ) = χ ( β ) = 0 ϕ := ρ ⇝ n ∣ α ∣ = ∣ β ∣ = q ∣ E F q k ∣ = q k + 1 − α k − β k ϕ 2 − [ t ] ∘ ϕ + [ q ] = [ 0 ] ( a ) ( b ) ( c )
Note that we have two eigenvalues of Frobenius. The first one is 1 1 1 because if we assume ϕ ( P ) = P \phi(P)=P ϕ ( P ) = P then
ϕ 2 − [ t ] ∘ ϕ + [ q ] = [ 1 ] − [ t ] + [ q ] = [ 1 − t + q ] = [ E F q ] = [ 0 ] \phi^2 - [t]\circ \phi + [q]=[1] - [t] + [q] = [1-t+q]=[E_{\mathbb F_q}]=[0] ϕ 2 − [ t ] ∘ ϕ + [ q ] = [ 1 ] − [ t ] + [ q ] = [ 1 − t + q ] = [ E F q ] = [ 0 ]
Since the product of roots of characteriscic polynomial is q q q , the second root is q q q .
So when we have r ∣ q k − 1 r \mid q^k-1 r ∣ q k − 1 we have a torsion subgroup of size r r r over F q \mathbb F_q F q . This will be part of the eigenspace of Frobenius with eigenvalue 1.
Consider a trace mapping:
T ( P ) : = ∑ σ ∈ Gal ( F q k / F q ) σ ( P ) = ∑ t = 0 k − 1 ( x q i , y q i ) T(P):=\sum_{\sigma \in \text{Gal}(\mathbb F_{q^k}/\mathbb F_{q})}\sigma(P)=\sum_{t=0}^{k-1}(x^{q^i},y^{q^i}) T ( P ) := σ ∈ Gal ( F q k / F q ) ∑ σ ( P ) = t = 0 ∑ k − 1 ( x q i , y q i )
Note that it will fix F q \mathbb F_q F q since the any Galois action will just permute the summands. Thus T : F q k → F q \text{T}: \mathbb F_{q^k} \to \mathbb F_q T : F q k → F q , in particular it sends the whole torsion to E [ r ] F q E[r]_{\mathbb F_q} E [ r ] F q subgroup. We will call this subgroup a trace-image subgroup. Note that trace will fix each point of the trace-image subgroup, that is will send it to itself.
Now let's define another group by using and anti-trace map
T a ( P ) : = [ k ] P − T ( P ) T^a(P):=[k]P-T(P) T a ( P ) := [ k ] P − T ( P )
If we consider it as the map of the whole torsion then it will be a subgroup of this torsion because T a ( P 1 + P 2 ) : = [ k ] ( P 1 + P 2 ) − T ( P 1 + P 2 ) T^a(P_1+P_2):=[k](P_1+P_2)-T(P_1+P_2) T a ( P 1 + P 2 ) := [ k ] ( P 1 + P 2 ) − T ( P 1 + P 2 ) . But we know that if there's a point P P P in torsion that is outside of F q \mathbb F_q F q then [ k ] P [k]P [ k ] P is also outside, so this subgroup will be not empty and different from trace-image subgroup. Also note that
T ( T a ( P ) ) = T a ( P ) + ϕ ( T a ( P ) ) + … + ϕ k − 1 ( T a ( P ) ) = [ k ] P − T a ( P ) + [ k ] ϕ ( P ) − T ( P ) + … + [ k ] ϕ k − 1 ( P ) − T ( P ) = [ k ] T a ( P ) − [ k ] T a ( P ) = O T(T^a(P))=T^a(P)+\phi(T^a(P))+\ldots + \phi^{k-1}(T^a(P))= \\
[k]P-T^a(P) + [k]\phi(P)-T(P)+\ldots + [k]\phi^{k-1}(P)-T(P) = \\
[k]T^a(P)-[k]T^a(P)=O T ( T a ( P )) = T a ( P ) + ϕ ( T a ( P )) + … + ϕ k − 1 ( T a ( P )) = [ k ] P − T a ( P ) + [ k ] ϕ ( P ) − T ( P ) + … + [ k ] ϕ k − 1 ( P ) − T ( P ) = [ k ] T a ( P ) − [ k ] T a ( P ) = O
So we call this group a trace-kernel subgroup. As we noted above this group is not empty so the kernel is at least the size of this group which is r r r . But kernel cannot be the whole torsion because the trace-image group is not empty. So the trace-kernel subgroup is exactly the kernel of the trace map.
Finally if there's a point P ∈ E [ r ] : ϕ ( P ) = [ q ] P P\in E[r]: \phi(P)=[q]P P ∈ E [ r ] : ϕ ( P ) = [ q ] P then T ( P ) = P + [ q ] P + … + [ q k − 1 ] P = [ ( q k − 1 ) / ( q − 1 ) ] P = O T(P)=P+[q]P+\ldots+[q^{k-1}]P=[(q^k-1)/(q-1)]P=O T ( P ) = P + [ q ] P + … + [ q k − 1 ] P = [( q k − 1 ) / ( q − 1 )] P = O . So we can say that trace-kernel subgroup is the intersection of torsion an the eigenspace of Frobenius with eigenvalue q q q .
To sum up we have two groups:
G 1 : = T ( E [ r ] ) trace-image subgroup ϕ ( P ) = P G 2 : = ker E [ r ] T trace-kernel subgroup ϕ ( P ) = [ q ] P \begin{array}{c|c|c}
\mathbb G_1: = T(E[r]) & \text{trace-image subgroup} & \phi(P)=P \\
\mathbb G_2 := \ker_{E[r]} T & \text{trace-kernel subgroup} & \phi(P)=[q]P \\
\end{array} G 1 := T ( E [ r ]) G 2 := ker E [ r ] T trace-image subgroup trace-kernel subgroup ϕ ( P ) = P ϕ ( P ) = [ q ] P
Weil pairing
We want to have a pairing function that maps two points of elliptic curve to a field that is bilinear, non-trivial and Galois invariant.
Consider a field F F F with char F = p \text{char} F=p char F = p , m : p ∤ m m: p \nmid m m : p ∤ m and a point Q ∈ E [ m ] Q \in E[m] Q ∈ E [ m ] . Then since [ m ] Q − [ m ] O = O [m]Q-[m]O=O [ m ] Q − [ m ] O = O by ( 4.2.4 ) (4.2.4) ( 4.2.4 ) there's a function f m , Q ∈ F ( E ) f_{m,Q} \in F(E) f m , Q ∈ F ( E ) :
div ( f m , Q ) = m ( Q ) − m ( O ) \text{div}(f_{m, Q})=m(Q)-m(O) div ( f m , Q ) = m ( Q ) − m ( O )
Since [ m ] ≠ const [m]\ne \text{const} [ m ] = const and it's a morphism then by ( 3.4.5 ) (3.4.5) ( 3.4.5 ) it's surjective so we can find a point
Q [ m ] − 1 : [ m ] Q [ m ] − 1 = Q Q_{[m]^{-1}}:[m]Q_{[m]^{-1}}=Q Q [ m ] − 1 : [ m ] Q [ m ] − 1 = Q
Consider a divisor:
D : = [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) = ∑ S ∈ [ m ] − 1 ( Q ) e [ m ] ( S ) ( S ) − ∑ T ∈ [ m ] − 1 ( O ) e [ m ] ( T ) ( T ) D:=[m]^*(Q)-[m]^*(O)=\sum_{S \in [m]^{-1}(Q)}e_{[m]}(S)(S)-\sum_{T \in [m]^{-1}(O)}e_{[m]}(T)(T) D := [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) = S ∈ [ m ] − 1 ( Q ) ∑ e [ m ] ( S ) ( S ) − T ∈ [ m ] − 1 ( O ) ∑ e [ m ] ( T ) ( T )
Recall that by ( 4.2.9 ) (4.2.9) ( 4.2.9 ) [ m ] [m] [ m ] is separable so it's unramified and e [ m ] = 1 e_{[m]}=1 e [ m ] = 1 . Then note that preimage of ( O ) (O) ( O ) is ker [ m ] ≡ E [ m ] \ker [m] \equiv E[m] ker [ m ] ≡ E [ m ] . And preimage of Q Q Q is Q [ m ] − 1 + E [ m ] Q_{[m]^{-1}}+E[m] Q [ m ] − 1 + E [ m ] so we have:
D = ∑ R ∈ E [ m ] ( Q [ m ] − 1 + R ) − ( R ) D= \sum_{R \in E[m]}(Q_{[m]^{-1}}+R)-(R) D = R ∈ E [ m ] ∑ ( Q [ m ] − 1 + R ) − ( R )
Note that the degree of this divisor is obvoisly 0 0 0 and ∑ R ∈ E [ m ] Q [ m ] − 1 + R − R = ∑ R ∈ E [ m ] Q [ m ] − 1 = [ m 2 ] Q [ m ] − 1 = [ m ] Q = O \sum_{R \in E[m]}Q_{[m]^{-1}}+R-R=\sum_{R \in E[m]}Q_{[m]^{-1}}=[m^2]Q_{[m]^{-1}}=[m]Q=O ∑ R ∈ E [ m ] Q [ m ] − 1 + R − R = ∑ R ∈ E [ m ] Q [ m ] − 1 = [ m 2 ] Q [ m ] − 1 = [ m ] Q = O , so D D D is principal and there's a function g m , Q g_{m,Q} g m , Q :
div ( g m , Q ) = [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) = ∑ R ∈ E [ m ] ( Q [ m ] − 1 + R ) − ( R ) \text{div}(g_{m,Q})=[m]^*(Q)-[m]^*(O)=\sum_{R \in E[m]}(Q_{[m]^{-1}}+R)-(R) div ( g m , Q ) = [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) = R ∈ E [ m ] ∑ ( Q [ m ] − 1 + R ) − ( R )
Then notice that:
( f m , Q ∘ [ m ] ) ( P ) = f m , Q ( [ m ] P ) div ( f m , Q ∘ [ m ] ) = m ∑ T ∈ [ m ] − 1 ( Q ) ( T ) − m ∑ S ∈ [ m ] − 1 ( O ) ( S ) = ∑ R ∈ E [ m ] m ( Q [ m ] − 1 + R ) − m ( R ) div ( g m , Q m ) = ∑ R ∈ E [ m ] m ( Q [ m ] − 1 + R ) − m ( R ) = div ( f m , Q ∘ [ m ] ) ⟹ div ( g m , Q m f ∘ [ m ] ) = 0 ⟹ f m , Q ∘ [ m ] = c g m , Q m (f_{m, Q} \circ [m])(P) = f_{m, Q}([m]P) \\
\text{div}(f_{m, Q} \circ [m]) = m\sum_{T \in [m]^{-1}(Q)}(T)-m\sum_{S \in [m]^{-1}(O)}(S)= \\
\sum_{R \in E[m]}m(Q_{[m]^{-1}}+R)-m(R) \\
\text{div}(g_{m, Q}^m) = \sum_{R \in E[m]}m(Q_{[m]^{-1}}+R)-m(R) = \text{div}(f_{m, Q} \circ [m]) \implies \\
\text{div}(\frac{g_{m, Q}^m}{f \circ [m]})=0 \implies
f_{m, Q} \circ [m] = c g_{m, Q}^m ( f m , Q ∘ [ m ]) ( P ) = f m , Q ([ m ] P ) div ( f m , Q ∘ [ m ]) = m T ∈ [ m ] − 1 ( Q ) ∑ ( T ) − m S ∈ [ m ] − 1 ( O ) ∑ ( S ) = R ∈ E [ m ] ∑ m ( Q [ m ] − 1 + R ) − m ( R ) div ( g m , Q m ) = R ∈ E [ m ] ∑ m ( Q [ m ] − 1 + R ) − m ( R ) = div ( f m , Q ∘ [ m ]) ⟹ div ( f ∘ [ m ] g m , Q m ) = 0 ⟹ f m , Q ∘ [ m ] = c g m , Q m
Since g m g^m g m is derived from divisor and thus defined up to a constant we can assume c = 1 c = 1 c = 1 and so:
f m , Q ∘ [ m ] = g m , Q m f_{m, Q} \circ [m] = g_{m, Q}^m f m , Q ∘ [ m ] = g m , Q m
Next take some point P ∈ E [ m ] P \in E[m] P ∈ E [ m ] and any point X ∈ E X \in E X ∈ E then
( g m , Q ( X + P ) g m , Q ( X ) ) m = f m , Q ( [ m ] X + [ m ] P ) f m , Q ( [ m ] X ) = 1 (\frac{g_{m, Q}(X+P)}{g_{m, Q}(X)})^m=\frac{f_{m, Q}([m]X+[m]P)}{f_{m, Q}([m]X)}=1 ( g m , Q ( X ) g m , Q ( X + P ) ) m = f m , Q ([ m ] X ) f m , Q ([ m ] X + [ m ] P ) = 1
So the mapping ϕ : E → P 1 , X ↦ g m , Q ( X + P ) g m , Q ( X ) \phi: E \to \mathbb P^1, X \mapsto \frac{g_{m, Q}(X+P)}{g_{m, Q}(X)} ϕ : E → P 1 , X ↦ g m , Q ( X ) g m , Q ( X + P ) take finite number of values in F ‾ \overline F F so it's not surjective and thus by ( 3.4.5 ) (3.4.5) ( 3.4.5 ) it's consant. Moreover that value of ϕ \phi ϕ is an m m m -th root of unity.
We'll denote the cyclic group of m m m -th roots of unity as μ m : = { x ∈ F ‾ : x m = 1 } \mu_m:=\{x \in \overline F: x^m=1\} μ m := { x ∈ F : x m = 1 } .
def: Weil pairing
∢ ( E , O ) / F ∈ E char F ∤ m e m ( P , Q ) : E [ m ] × E [ m ] → μ m , P , Q ↦ g m , Q ( X + P ) g m , Q ( X ) \begin{align*}
&\sphericalangle \\
&(E, O)/F \in \mathcal E \\
&\text{char} F \nmid m \\
\hline
\\
&e_m(P,Q): E[m] \times E[m] \to \mu_m, P,Q \mapsto \frac{g_{m, Q}(X+P)}{g_{m, Q}(X)}
\end{align*} ∢ ( E , O ) / F ∈ E char F ∤ m e m ( P , Q ) : E [ m ] × E [ m ] → μ m , P , Q ↦ g m , Q ( X ) g m , Q ( X + P )
Proposition 4.3.3: Weil pairing properties
∢ ( E , O ) / F ∈ E char F ∤ m P i , Q i ∈ E [ m ] e m ( P 1 + P 2 , Q ) = e m ( P 1 , Q ) e m ( P 2 , Q ) e m ( P , Q 1 + Q 2 ) = e m ( P , Q 1 ) e m ( P , Q 2 ) e m ( P , P ) = 1 e m ( P , Q ) = e m ( Q , P ) − 1 ∀ σ ∈ Gal F ‾ / F : e m ( P , Q ) σ = e m ( P σ , Q σ ) ∀ P ∈ E [ m m ′ ] , Q ∈ E [ m ] : e m m ′ ( P , Q ) = e m ( [ m ′ ] P , Q ) ( ∀ S ∈ E [ m ] : e m ( S , T ) = 1 ) ⟹ T = O \begin{align*}
&\sphericalangle \\
&(E, O)/F \in \mathcal E \\
&\text{char} F \nmid m \\
&P_i, Q_i \in E[m] \\
\hline
\\
&\begin{align*}
&e_m(P_1+P_2,Q)=e_m(P_1,Q)e_m(P_2,Q) \hspace{0.5cm} \tag{a}\\
&e_m(P,Q_1+Q_2)=e_m(P,Q_1)e_m(P,Q_2) \hspace{0.5cm} \tag{b}\\
&e_m(P,P)=1 \hspace{0.5cm} \tag{c}\\
&e_m(P,Q)=e_m(Q,P)^{-1} \hspace{0.5cm} \tag{d}\\
&\forall \sigma \in \text{Gal}_{\overline F/F}: e_m(P,Q)^\sigma = e_m(P^\sigma ,Q^\sigma )\hspace{0.5cm} \tag{e}\\
&\forall P \in E[mm'], Q \in E[m]: e_{mm'}(P ,Q)=e_{m}([m']P ,Q) \hspace{0.5cm} \tag{f}\\
& (\forall S \in E[m]: e_m(S,T)=1) \implies T = O\hspace{0.5cm} \tag{g}\\
\end{align*}
\end{align*} ∢ ( E , O ) / F ∈ E char F ∤ m P i , Q i ∈ E [ m ] e m ( P 1 + P 2 , Q ) = e m ( P 1 , Q ) e m ( P 2 , Q ) e m ( P , Q 1 + Q 2 ) = e m ( P , Q 1 ) e m ( P , Q 2 ) e m ( P , P ) = 1 e m ( P , Q ) = e m ( Q , P ) − 1 ∀ σ ∈ Gal F / F : e m ( P , Q ) σ = e m ( P σ , Q σ ) ∀ P ∈ E [ m m ′ ] , Q ∈ E [ m ] : e m m ′ ( P , Q ) = e m ([ m ′ ] P , Q ) ( ∀ S ∈ E [ m ] : e m ( S , T ) = 1 ) ⟹ T = O ( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )
Proof
a.
e m ( P 1 + P 2 , Q ) = g m , Q ( X + P 1 + P 2 ) g m , Q ( X ) = g m , Q ( X + P 1 + P 2 ) g m , Q ( X + P 1 ) g m , Q ( X + P 1 ) g m , Q ( X ) = e ( P 1 , Q ) e ( P 2 , Q ) e_m(P_1+P_2, Q)=\frac{g_{m, Q}(X+P_1+P_2)}{g_{m, Q}(X)}= \\\frac{g_{m, Q}(X+P_1+P_2)}{g_{m, Q}(X+P_1)}\frac{g_{m, Q}(X+P_1)}{g_{m, Q}(X)} = e(P_1,Q)e(P_2,Q) e m ( P 1 + P 2 , Q ) = g m , Q ( X ) g m , Q ( X + P 1 + P 2 ) = g m , Q ( X + P 1 ) g m , Q ( X + P 1 + P 2 ) g m , Q ( X ) g m , Q ( X + P 1 ) = e ( P 1 , Q ) e ( P 2 , Q )
b.
Consider a function h h h with divisor:
div ( h ) = ( Q 1 + Q 2 ) − ( Q 1 ) − ( Q 2 ) + ( O ) \text{div}(h)=(Q_1+Q_2)-(Q_1)-(Q_2)+(O) div ( h ) = ( Q 1 + Q 2 ) − ( Q 1 ) − ( Q 2 ) + ( O )
Then we have
div ( f m , Q 1 + Q 2 f m , Q 1 f m , Q 2 ) = m ( Q 1 + Q 2 ) − m ( O ) − m ( Q 1 ) + m ( O ) − m ( Q 2 ) + m ( O ) = m ( Q 1 + Q 2 ) − m ( Q 1 ) − m ( Q 2 ) + m ( O ) = m div ( h ) = div ( h m ) ⟹ f m , Q 1 + Q 2 = c f m , Q 1 f m , Q 2 h m \text{div}(\frac{f_{m, Q_1+Q_2}}{f_{m, Q_1}f_{m, Q_2}})=m(Q_1+Q_2)-m(O)-m(Q_1)+m(O)-m(Q_2)+m(O) =\\
m(Q_1+Q_2)-m(Q_1)-m(Q_2)+m(O)=m\text{div}(h)=\text{div}(h^m) \implies \\
f_{m, Q_1+Q_2}=cf_{m, Q_1}f_{m, Q_2}h^m div ( f m , Q 1 f m , Q 2 f m , Q 1 + Q 2 ) = m ( Q 1 + Q 2 ) − m ( O ) − m ( Q 1 ) + m ( O ) − m ( Q 2 ) + m ( O ) = m ( Q 1 + Q 2 ) − m ( Q 1 ) − m ( Q 2 ) + m ( O ) = m div ( h ) = div ( h m ) ⟹ f m , Q 1 + Q 2 = c f m , Q 1 f m , Q 2 h m
Now let's compose it with [ m ] [m] [ m ] :
g m , Q 1 + Q 2 m = f m , Q 1 + Q 2 ∘ m = c ( f m , Q 1 ∘ m ) ( f m , Q 2 ∘ m ) ( h m ∘ m ) = c g m , Q 1 m g m , Q 2 m ( h m ∘ m ) ⟹ g m , Q 1 + Q 2 = c g m , Q 1 g m , Q 2 ( h ∘ m ) g^m_{m, Q_1+Q_2}=f_{m, Q_1+Q_2} \circ m=c(f_{m, Q_1} \circ m)(f_{m, Q_2} \circ m)(h^m \circ m) = \\
cg^m_{m, Q_1}g_{m, Q_2}^m(h^m \circ m) \implies \\
g_{m, Q_1+Q_2}=cg_{m, Q_1}g_{m, Q_2}(h \circ m) g m , Q 1 + Q 2 m = f m , Q 1 + Q 2 ∘ m = c ( f m , Q 1 ∘ m ) ( f m , Q 2 ∘ m ) ( h m ∘ m ) = c g m , Q 1 m g m , Q 2 m ( h m ∘ m ) ⟹ g m , Q 1 + Q 2 = c g m , Q 1 g m , Q 2 ( h ∘ m )
So
e m ( P , Q 1 + Q 2 ) = g m , Q 1 + Q 2 ( X + P ) g m , Q 1 + Q 2 ( X ) = g m , Q 1 ( X + P ) g m , Q 2 ( X + P ) h ( [ m ] X + [ m ] P ) g m , Q 1 ( X ) g m , Q 2 ( X ) h ( [ m ] X ) = e m ( P , Q 1 ) e m ( P , Q 2 ) e_m(P,Q_1+Q_2)=\frac{g_{m, Q_1+Q_2}(X+P)}{g_{m, Q_1+Q_2}(X)}=\\
\frac{g_{m, Q_1}(X+P)g_{m, Q_2}(X+P)h([m]X+[m]P)}{g_{m, Q_1}(X)g_{m, Q_2}(X)h([m]X)}=e_m(P,Q_1)e_m(P,Q_2) e m ( P , Q 1 + Q 2 ) = g m , Q 1 + Q 2 ( X ) g m , Q 1 + Q 2 ( X + P ) = g m , Q 1 ( X ) g m , Q 2 ( X ) h ([ m ] X ) g m , Q 1 ( X + P ) g m , Q 2 ( X + P ) h ([ m ] X + [ m ] P ) = e m ( P , Q 1 ) e m ( P , Q 2 )
c.
Consider a translation-by-P map τ P : E → E , Q ↦ Q + P \tau_P: E \to E, Q \mapsto Q+P τ P : E → E , Q ↦ Q + P . Then
div ( ∏ k = 0 m − 1 f m , P ∘ τ [ k ] P ) = m ∑ k = 0 m − 1 ( [ 1 − i ] P ) − ( [ − i ] P ) = 0 \text{div}(\prod_{k=0}^{m-1}f_{m,P} \circ \tau_{[k]P}) = m\sum_{k=0}^{m-1}([1-i]P)-([-i]P)=0 div ( k = 0 ∏ m − 1 f m , P ∘ τ [ k ] P ) = m k = 0 ∑ m − 1 ([ 1 − i ] P ) − ([ − i ] P ) = 0
So we have:
∀ X ∈ E : ∏ k = 0 m − 1 ( f m , P ∘ τ [ k ] P ) ( X ) = const \forall X \in E: \prod_{k=0}^{m-1}(f_{m,P} \circ \tau_{[k]P})(X)=\text{const} ∀ X ∈ E : k = 0 ∏ m − 1 ( f m , P ∘ τ [ k ] P ) ( X ) = const
Now taking P [ m ] − 1 : [ m ] P [ m ] − 1 = P P_{[m]^{-1}}:[m]P_{[m]^{-1}}=P P [ m ] − 1 : [ m ] P [ m ] − 1 = P we have:
( f m , P ∘ [ m ] ∘ τ [ k ] P [ m ] − 1 ) ( X ) = f m , P ( [ m ] ( X + [ k ] P [ m ] − 1 ) ) = f m , P ( [ m ] X + [ k ] P ) ∀ X ∈ E : ∏ k = 0 m − 1 ( g m , P m ∘ τ P [ m ] − 1 ) ( X ) = ∏ k = 0 m − 1 ( f m , P ∘ [ m ] ∘ τ [ k ] P [ m ] − 1 ) ( X ) = ∏ k = 0 m − 1 f m , P ( [ m ] X + [ k ] P ) (f_{m,P} \circ [m] \circ \tau_{[k]P_{[m]^{-1}}})(X)=f_{m,P}([m](X+[k]P_{[m]^{-1}}))= \\
f_{m,P}([m]X+[k]P) \\
\forall X \in E: \prod_{k=0}^{m-1}(g_{m,P}^m \circ \tau_{P_{[m]^{-1}}})(X) =
\prod_{k=0}^{m-1}(f_{m,P} \circ [m] \circ \tau_{[k]P_{[m]^{-1}}})(X) =\\
\prod_{k=0}^{m-1}f_{m,P}([m]X+[k]P) ( f m , P ∘ [ m ] ∘ τ [ k ] P [ m ] − 1 ) ( X ) = f m , P ([ m ] ( X + [ k ] P [ m ] − 1 )) = f m , P ([ m ] X + [ k ] P ) ∀ X ∈ E : k = 0 ∏ m − 1 ( g m , P m ∘ τ P [ m ] − 1 ) ( X ) = k = 0 ∏ m − 1 ( f m , P ∘ [ m ] ∘ τ [ k ] P [ m ] − 1 ) ( X ) = k = 0 ∏ m − 1 f m , P ([ m ] X + [ k ] P )
So it follows that:
∏ k = 0 m − 1 g m , P m ∘ τ P [ m ] − 1 = const ⟹ ∏ k = 0 m − 1 g m , P ∘ τ P [ m ] − 1 = const \prod_{k=0}^{m-1}g_{m,P}^m \circ \tau_{P_{[m]^{-1}}} = \text{const} \implies \\
\prod_{k=0}^{m-1}g_{m,P} \circ \tau_{P_{[m]^{-1}}}= \text{const} k = 0 ∏ m − 1 g m , P m ∘ τ P [ m ] − 1 = const ⟹ k = 0 ∏ m − 1 g m , P ∘ τ P [ m ] − 1 = const
In particular taking X ′ = X + P [ m ] − 1 X' = X+P_{[m]^{-1}} X ′ = X + P [ m ] − 1 so
∏ k = 0 m − 1 g m , P ( X + [ k ] P [ m ] − 1 ) = ∏ k = 0 m − 1 g m , P ( X + [ k + 1 ] P [ m ] − 1 ) \prod_{k=0}^{m-1}g_{m,P}(X+[k]P_{[m]^{-1}})=\prod_{k=0}^{m-1}g_{m,P}(X+[k+1]P_{[m]^{-1}}) k = 0 ∏ m − 1 g m , P ( X + [ k ] P [ m ] − 1 ) = k = 0 ∏ m − 1 g m , P ( X + [ k + 1 ] P [ m ] − 1 )
Cancelling similar terms:
g m , P ( X ) = g m , P ( X + [ m ] P [ m ] − 1 ) = g m , P ( X + P ) ⟹ e m ( P , P ) = 1 g_{m,P}(X)=g_{m,P}(X+[m]P_{[m]^{-1}})=g_{m,P}(X+P) \implies \\
e_m(P,P)=1 g m , P ( X ) = g m , P ( X + [ m ] P [ m ] − 1 ) = g m , P ( X + P ) ⟹ e m ( P , P ) = 1
d.
e m ( P + Q , P + Q ) = e m ( P , P ) e m ( P , Q ) e m ( Q , P ) e m ( Q , Q ) ⟹ e m ( P , Q ) e m ( Q , P ) = 1 e_m(P+Q,P+Q)=e_m(P,P)e_m(P,Q)e_m(Q,P)e_m(Q,Q) \implies \\
e_m(P,Q)e_m(Q,P)=1 e m ( P + Q , P + Q ) = e m ( P , P ) e m ( P , Q ) e m ( Q , P ) e m ( Q , Q ) ⟹ e m ( P , Q ) e m ( Q , P ) = 1
e.
Recall that for any f ∈ F ( E ) , P ∈ E : f ( P ) σ = f σ ( P σ ) f \in F(E), P \in E: f(P)^\sigma = f^{\sigma}(P^\sigma) f ∈ F ( E ) , P ∈ E : f ( P ) σ = f σ ( P σ ) . Then
div ( f m , Q ) = m ( Q ) − m ( O ) div ( f m , Q σ ) = div ( f m , Q ) σ = m ( Q σ ) − m ( O ) = div ( f m , Q σ ) ⟹ f m , Q σ = f m , Q σ \text{div}(f_{m, Q})=m(Q)-m(O) \\
\text{div}(f^\sigma_{m,Q})=\text{div}(f_{m,Q})^\sigma=m(Q^\sigma)-m(O)=\text{div}(f_{m,Q^\sigma}) \implies \\
f^\sigma_{m,Q} = f_{m,Q^\sigma} div ( f m , Q ) = m ( Q ) − m ( O ) div ( f m , Q σ ) = div ( f m , Q ) σ = m ( Q σ ) − m ( O ) = div ( f m , Q σ ) ⟹ f m , Q σ = f m , Q σ
The same is true for g g g , so:
e m ( P , Q ) σ = g m , Q σ ( X σ + P σ ) g m , Q σ ( X σ ) = g m , Q σ ( X σ + P σ ) g m , Q σ ( X σ ) = e m ( P σ , Q σ ) e_m(P,Q)^\sigma=\frac{g_{m, Q}^{\sigma}(X^{\sigma}+P^{\sigma})}{g^{\sigma}_{m, Q}(X^{\sigma})}=
\frac{g_{m, Q^{\sigma}}(X^{\sigma}+P^{\sigma})}{g_{m, Q^{\sigma}}(X^{\sigma})}=e_m(P^\sigma, Q^\sigma) e m ( P , Q ) σ = g m , Q σ ( X σ ) g m , Q σ ( X σ + P σ ) = g m , Q σ ( X σ ) g m , Q σ ( X σ + P σ ) = e m ( P σ , Q σ )
f.
Notice that:
div ( f m , Q m ′ ) = m ′ m ( Q ) − m ′ m ( O ) ( g m , Q ∘ [ m ′ ] ) m m ′ = ( f m , Q ∘ [ m m ′ ] ) m ′ = f m m ′ , Q ∘ [ m m ′ ] = g m m ′ , Q \text{div}(f_{m, Q}^{m'})=m'm(Q)-m'm(O) \\
(g_{m, Q}\circ [m'])^{mm'}=(f_{m, Q}\circ [mm'])^{m'}=f_{mm',Q}\circ [mm']=g_{mm',Q} div ( f m , Q m ′ ) = m ′ m ( Q ) − m ′ m ( O ) ( g m , Q ∘ [ m ′ ] ) m m ′ = ( f m , Q ∘ [ m m ′ ] ) m ′ = f m m ′ , Q ∘ [ m m ′ ] = g m m ′ , Q
So
e m m ′ ( P , Q ) = g m , Q ∘ [ m ′ ] ( X + P ) g m , Q ∘ [ m ′ ] ( X ) = g m , Q ( Y + [ m ′ ] P ) g m , Q ( Y ) = e m ( [ m ′ ] P , Q ) e_{mm'}(P,Q)=\frac{g_{m, Q}\circ [m'](X+P)}{g_{m, Q}\circ [m'](X)}=\frac{g_{m, Q}(Y+[m']P)}{g_{m, Q}(Y)}=e_{m}([m']P,Q) e m m ′ ( P , Q ) = g m , Q ∘ [ m ′ ] ( X ) g m , Q ∘ [ m ′ ] ( X + P ) = g m , Q ( Y ) g m , Q ( Y + [ m ′ ] P ) = e m ([ m ′ ] P , Q )
g.
We will not prove it here.
□ \square □
This definition of pairing works fine but it's a bit tedious for real world calculation. After all it involved finding f f f with divisor m ( Q ) − m ( O ) m(Q)-m(O) m ( Q ) − m ( O ) and g g g with divisor [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) [m]^*(Q)-[m]^*(O) [ m ] ∗ ( Q ) − [ m ] ∗ ( O ) and then relate those two functions. We want to narrow it down to at least finding functions with m ( Q ) − m ( O ) m(Q)-m(O) m ( Q ) − m ( O ) .
We start this journey by defining how to calculate function of divisor.
def: Divisor support
∢ D = ∑ n P ( P ) supp ( D ) : = { P : n P ≠ 0 } \begin{align*}
&\sphericalangle \\
&D = \sum n_P(P)
\\
\hline
\\
&\text{supp}(D):=\{P: n_P \ne 0\}
\end{align*} ∢ D = ∑ n P ( P ) supp ( D ) := { P : n P = 0 }
def: Divisor sum
∢ D = ∑ n P ( P ) sum ( D ) : = ∑ [ n P ] P \begin{align*}
&\sphericalangle \\
&D = \sum n_P(P)
\\
\hline
\\
&\text{sum}(D):=\sum [n_P]P
\end{align*} ∢ D = ∑ n P ( P ) sum ( D ) := ∑ [ n P ] P
def: Function evaluation on divisor
∢ ( E , O ) ∈ E D = ∑ n P ( P ) f ∈ F ( E ) supp ( div ( f ) ) ∩ supp ( D ) = ∅ f ( D ) : = ∏ P ∈ supp ( D ) f ( P ) n P \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
&D = \sum n_P(P) \\
&f \in F(E) \\
&\text{supp}(\text{div}(f)) \cap \text{supp}(D) = \empty
\\
\hline
\\
&f(D):=\prod_{P \in \text{supp}(D)} f(P)^{n_P}
\end{align*} ∢ ( E , O ) ∈ E D = ∑ n P ( P ) f ∈ F ( E ) supp ( div ( f )) ∩ supp ( D ) = ∅ f ( D ) := P ∈ supp ( D ) ∏ f ( P ) n P
Note that this definition make sense if supports are disjoint. Otherwise we'll have 0 0 0 on common point which will bring the whole evaluation to 0 0 0 .
Proposition 4.3.4: Weil reciprocity
∢ ( E , O ) ∈ E f , g ∈ F ( E ) supp ( div ( f ) ) ∩ supp ( div ( g ) ) = ∅ g ( div ( f ) ) = f ( div ( g ) ) \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
&f,g \in F(E) \\
&\text{supp}(\text{div}(f)) \cap \text{supp}(\text{div}(g)) = \empty
\\
\hline
\\
&g(\text{div}(f))=f(\text{div}(g))
\end{align*} ∢ ( E , O ) ∈ E f , g ∈ F ( E ) supp ( div ( f )) ∩ supp ( div ( g )) = ∅ g ( div ( f )) = f ( div ( g ))
Proof
First, let's prove for the case E = P 1 E = \mathbb P^1 E = P 1 . Consider two polynomials f = ( x − α 1 ) … ( x − α n ) , g = ( x − β 1 ) … ( x − β k ) f = (x-\alpha_1)\ldots(x-\alpha_n), g=(x-\beta_1)\ldots(x-\beta_k) f = ( x − α 1 ) … ( x − α n ) , g = ( x − β 1 ) … ( x − β k ) , where roots might be repeating. Then consider a following table:
α 1 − β 1 … α n − β k … α n − β 1 … α n − β k \begin{matrix}
\alpha_1-\beta_1 & \ldots & \alpha_n-\beta_k \\
\ldots \\
\alpha_n-\beta_1 & \ldots & \alpha_n-\beta_k
\end{matrix} α 1 − β 1 … α n − β 1 … … α n − β k α n − β k
Notice that g ( div ( f ) ) g(\text{div}(f)) g ( div ( f )) and f ( div ( g ) ) f(\text{div}(g)) f ( div ( g )) is the product of all terms in the table above (g ( div ( f ) ) g(\text{div}(f)) g ( div ( f )) goes by rows and f ( div ( g ) ) f(\text{div}(g)) f ( div ( g )) goes by columns). It is true only each term differs by − 1 -1 − 1 factor, so we get an "error" by ( − 1 ) m k (-1)^{mk} ( − 1 ) mk . But remeber that we're in a projective space so f f f will have n n n poles (or rather the pole of order n n n ) and g g g will have k k k poles. We'll have the same mismatch ( − 1 ) m k (-1)^{mk} ( − 1 ) mk there so the errors will cancel.
Now let's prove for arbitrary E E E . It can be proved that
f ( ϕ ∗ D ) = ( ϕ ∗ f ) ( D ) , f ( ϕ ∗ D ) = ( ϕ ∗ f ) ( D ) f(\phi^*D)=(\phi_*f)(D), f(\phi_*D)=(\phi^*f)(D) f ( ϕ ∗ D ) = ( ϕ ∗ f ) ( D ) , f ( ϕ ∗ D ) = ( ϕ ∗ f ) ( D )
Consider a mapping:
ϕ ( P ) = { [ g ( P ) , 1 ] , g ∈ O C , P r [ 1 , 0 ] , g ∉ O C , P r \phi(P) = \begin{cases}
[g(P), 1], g \in \mathcal O^r_{C,P} \\
[1,0], g \notin \mathcal O^r_{C,P}
\end{cases} ϕ ( P ) = { [ g ( P ) , 1 ] , g ∈ O C , P r [ 1 , 0 ] , g ∈ / O C , P r
Then
f ( div ( g ) ) = f ( ϕ ∗ ( ( 0 ) − ( ∞ ) ) ) = ( ϕ ∗ f ) ( ( 0 ) − ( ∞ ) ) = ( ϕ ∗ f ) ( div ( x ) ) f(\text{div}(g))=f(\phi^*((0)-(\infty)))=(\phi_*f)((0)-(\infty))= \\
(\phi_*f)(\text{div}(x)) f ( div ( g )) = f ( ϕ ∗ (( 0 ) − ( ∞ ))) = ( ϕ ∗ f ) (( 0 ) − ( ∞ )) = ( ϕ ∗ f ) ( div ( x ))
Now notice that the latter are actually functions in P 1 \mathbb P^1 P 1 so
f ( div ( g ) ) = ( ϕ ∗ f ) ( div ( x ) ) = x ( div ( ϕ ∗ f ) ) = x ( ϕ ∗ div ( f ) ) = ϕ ∗ x ( div ( f ) ) = g ( div ( f ) ) f(\text{div}(g))=(\phi_*f)(\text{div}(x))=x(\text{div}(\phi_*f))=x(\phi_*\text{div}(f))= \\
\phi^*x(\text{div}(f))=g(\text{div}(f)) f ( div ( g )) = ( ϕ ∗ f ) ( div ( x )) = x ( div ( ϕ ∗ f )) = x ( ϕ ∗ div ( f )) = ϕ ∗ x ( div ( f )) = g ( div ( f ))
□ \square □
def: Alternative definition of Weil pairing
∢ ( E , O ) ∈ E m ∈ N : char F ∤ m S , T ∈ E [ m ] D S , D T ∈ Div 0 ( E ) sum ( D S ) = S , sum ( D T ) = T supp ( D S ) ∩ supp ( D T ) = ∅ h S , h T ∈ F ( E ) : div ( h S ) = m D S , div ( h T ) = m D T e ^ m ( S , T ) : = h T ( D S ) h S ( D T ) \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
&m \in \N: \text{char}F \nmid m \\
&S, T \in E[m] \\
&D_S, D_T \in \text{Div}^0(E) \\
&\text{sum}(D_S)=S,\text{sum}(D_T)=T \\
&\text{supp}(D_S) \cap \text{supp}(D_T) = \empty \\
&h_S, h_T \in F(E):\text{div}(h_S)=mD_S, \text{div}(h_T)=mD_T
\\
\hline
\\
&\hat e_m(S,T):=\frac{h_T(D_S)}{h_S(D_T)}
\end{align*} ∢ ( E , O ) ∈ E m ∈ N : char F ∤ m S , T ∈ E [ m ] D S , D T ∈ Div 0 ( E ) sum ( D S ) = S , sum ( D T ) = T supp ( D S ) ∩ supp ( D T ) = ∅ h S , h T ∈ F ( E ) : div ( h S ) = m D S , div ( h T ) = m D T e ^ m ( S , T ) := h S ( D T ) h T ( D S )
Next we want to prove a serios of propositions that will lead us to the conclusion that this definition is equivalent.
From now on we'll assume that we always work in a torsion of the size m m m so instead of writing f m , P f_{m,P} f m , P we'll just write f P f_P f P .
First define two quantities:
c ( [ m ] V , [ m ] W ) : = f [ m ] V + [ m ] W ( X ) f [ m ] V ( X ) f [ m ] W ( X − [ m ] V ) d ( V , W ) : = g [ m ] V + [ m ] W ( X ) g [ m ] V ( X ) g [ m ] W ( X − V ) c([m]V,[m]W):=\frac{f_{[m]V+[m]W}(X)}{f_{[m]V}(X)f_{[m]W}(X-[m]V)} \\
d(V,W):=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)} \\ c ([ m ] V , [ m ] W ) := f [ m ] V ( X ) f [ m ] W ( X − [ m ] V ) f [ m ] V + [ m ] W ( X ) d ( V , W ) := g [ m ] V ( X ) g [ m ] W ( X − V ) g [ m ] V + [ m ] W ( X )
Proposition 4.3.5: The alternative definition of Weil pairing
∢ ( E , O ) ∈ E m ∈ N : char F ∤ m S , T ∈ E [ m ] c ( [ m ] V , [ m ] W ) , d ( V , W ) = const ( X ) d ( V , W ) m = c ( [ m ] V , [ m ] W ) V , W , U ∈ E [ m 2 ] ⟹ d ( V , W + [ m ] U ) = d ( V , W ) V , W , U ∈ E [ m 2 ] ⟹ d ( V + [ m ] U , W ) = d ( V , W ) e m ( [ m ] U , [ m ] W ) d ( U , V ) d ( V , U ) = d ( V , W ) d ( U + W , V ) d ( V , U + W ) d ( W , V ) e m ( S , T ) = c ( S , T ) c ( T , S ) e ^ m ( S , T ) = e m ( S , T ) \begin{align*}
&\sphericalangle \\
&(E, O) \in \mathcal E \\
&m \in \N: \text{char}F \nmid m \\
&S, T \in E[m] \\
\hline
\\
&\begin{align*}
& c([m]V,[m]W), d(V,W) = \text{const}(X)\hspace{0.5cm} \tag{a}\\
& d(V,W)^m=c([m]V,[m]W)\hspace{0.5cm} \tag{b}\\
& V,W,U \in E[m^2] \implies d(V,W+[m]U)=d(V,W)\hspace{0.5cm} \tag{c}\\
& V,W,U \in E[m^2] \implies d(V+[m]U,W)=d(V,W)e_m([m]U,[m]W)\hspace{0.5cm} \tag{d}\\
& \frac{d(U,V)}{d(V,U)}=\frac{d(V,W)d(U+W,V)}{d(V,U+W)d(W,V)}\hspace{0.5cm} \tag{e}\\
& e_m(S,T)=\frac{c(S,T)}{c(T,S)}\hspace{0.5cm} \tag{f}\\
& \hat e_m(S,T)=e_m(S,T)\hspace{0.5cm} \tag{g}\\
\end{align*}
\end{align*} ∢ ( E , O ) ∈ E m ∈ N : char F ∤ m S , T ∈ E [ m ] c ([ m ] V , [ m ] W ) , d ( V , W ) = const ( X ) d ( V , W ) m = c ([ m ] V , [ m ] W ) V , W , U ∈ E [ m 2 ] ⟹ d ( V , W + [ m ] U ) = d ( V , W ) V , W , U ∈ E [ m 2 ] ⟹ d ( V + [ m ] U , W ) = d ( V , W ) e m ([ m ] U , [ m ] W ) d ( V , U ) d ( U , V ) = d ( V , U + W ) d ( W , V ) d ( V , W ) d ( U + W , V ) e m ( S , T ) = c ( T , S ) c ( S , T ) e ^ m ( S , T ) = e m ( S , T ) ( a ) ( b ) ( c ) ( d ) ( e ) ( f ) ( g )
Proof
a.
First note that
d ( V , W ) ( X ) m = f [ m ] V + [ m ] W ( [ m ] X ) f [ m ] V ( [ m ] X ) f [ m ] W ( [ m ] X − [ m ] V ) = c ( [ m ] W , [ m ] V ) ( [ m ] X ) d(V,W)(X)^m=\frac{f_{[m]V+[m]W}([m]X)}{f_{[m]V}([m]X)f_{[m]W}([m]X-[m]V)}= \\
c([m]W,[m]V)([m]X) d ( V , W ) ( X ) m = f [ m ] V ([ m ] X ) f [ m ] W ([ m ] X − [ m ] V ) f [ m ] V + [ m ] W ([ m ] X ) = c ([ m ] W , [ m ] V ) ([ m ] X )
So we have:
div ( c ( m V , m W ) ) = m ( [ m ] V + [ m ] W ) − m ( O ) − ( m ( [ m ] V ) − m ( O ) ) − − ( m ( [ m ] V + [ m ] W ) − m ( [ m ] V ) ) = 0 \text{div}(c(mV,mW))= \\
m([m]V+[m]W)-m(O)-(m([m]V)-m(O))- \\
-(m([m]V+[m]W)-m([m]V)) = 0\\ div ( c ( mV , mW )) = m ([ m ] V + [ m ] W ) − m ( O ) − ( m ([ m ] V ) − m ( O )) − − ( m ([ m ] V + [ m ] W ) − m ([ m ] V )) = 0
This implies that c ( [ m ] W , [ m ] V ) c([m]W,[m]V) c ([ m ] W , [ m ] V ) is const as a function of X X X and so is d ( V , W ) m d(V,W)^m d ( V , W ) m , so 0 = div ( d ( V , W ) m ) = m div ( d ( V , W ) ) ⟹ div ( d ( V , W ) ) = 0 0=\text{div}(d(V,W)^m)=m\text{div}(d(V,W))\implies \text{div}(d(V,W)) = 0 0 = div ( d ( V , W ) m ) = m div ( d ( V , W )) ⟹ div ( d ( V , W )) = 0 . And so d ( V , W ) d(V,W) d ( V , W ) is const as well.
b.
Follows immediately from ( a ) (a) ( a )
c.
Note that since W ∈ E [ m 2 ] W \in E[m^2] W ∈ E [ m 2 ] [ m ] ( W + [ m ] U ) = [ m ] W [m](W+[m]U)=[m]W [ m ] ( W + [ m ] U ) = [ m ] W so
d ( V , W + [ m ] U ) = g [ m ] V + [ m ] W ( X ) g [ m ] V ( X ) g [ m ] W ( X − V ) = d ( V , W ) d(V,W+[m]U)=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)}=d(V,W) d ( V , W + [ m ] U ) = g [ m ] V ( X ) g [ m ] W ( X − V ) g [ m ] V + [ m ] W ( X ) = d ( V , W )
d.
d ( V + [ m ] U , W ) = g [ m ] V + [ m ] W ( X ) g [ m ] V ( X ) g [ m ] W ( X − V − [ m ] U ) = g [ m ] V + [ m ] W ( X ) g [ m ] V ( X ) g [ m ] W ( X − V ) ⋅ g [ m ] W ( X − V ) g [ m ] W ( X − V − [ m ] U ) = d ( V , W ) e n ( [ m ] U , [ m ] W ) d(V+[m]U,W)=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V-[m]U)}= \\
\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)}\cdot \frac{g_{[m]W}(X-V)}{g_{[m]W}(X-V-[m]U)} = \\
d(V,W)e_n([m]U,[m]W) d ( V + [ m ] U , W ) = g [ m ] V ( X ) g [ m ] W ( X − V − [ m ] U ) g [ m ] V + [ m ] W ( X ) = g [ m ] V ( X ) g [ m ] W ( X − V ) g [ m ] V + [ m ] W ( X ) ⋅ g [ m ] W ( X − V − [ m ] U ) g [ m ] W ( X − V ) = d ( V , W ) e n ([ m ] U , [ m ] W )
For the last equation assume X ′ = X − V − [ m ] U X'=X-V-[m]U X ′ = X − V − [ m ] U
e.
First consider some equations for U , V , W U, V, W U , V , W
g [ m ] U + ( [ m ] V + [ m ] W ) ( X ) = d ( U , V + W ) g [ m ] U ( X ) g [ m ] V + [ m ] W ( X − U ) = d ( U , V + W ) d ( V , W ) g [ m ] U ( X ) g [ m ] V ( X − U ) g [ m ] W ( X − U − V ) g_{[m]U+([m]V+[m]W)}(X)=d(U,V+W)g_{[m]U}(X)g_{[m]V+[m]W}(X-U)= \\
d(U,V+W)d(V,W)g_{[m]U}(X)g_{[m]V}(X-U)g_{[m]W}(X-U-V) g [ m ] U + ([ m ] V + [ m ] W ) ( X ) = d ( U , V + W ) g [ m ] U ( X ) g [ m ] V + [ m ] W ( X − U ) = d ( U , V + W ) d ( V , W ) g [ m ] U ( X ) g [ m ] V ( X − U ) g [ m ] W ( X − U − V )
On the other hand:
g ( [ m ] U + [ m ] V ) + [ m ] W ( X ) = d ( U + V , W ) g [ m ] U + [ m ] V ( X ) g [ m ] W ( X − U − V ) = d ( U + V , W ) d ( U , V ) g [ m ] U ( X ) g [ m ] V ( X − U ) ) g [ m ] W ( X − U − V ) g_{([m]U+[m]V)+[m]W}(X)=d(U+V,W)g_{[m]U+[m]V}(X)g_{[m]W}(X-U-V)= \\
d(U+V,W)d(U,V)g_{[m]U}(X)g_{[m]V}(X-U))g_{[m]W}(X-U-V) g ([ m ] U + [ m ] V ) + [ m ] W ( X ) = d ( U + V , W ) g [ m ] U + [ m ] V ( X ) g [ m ] W ( X − U − V ) = d ( U + V , W ) d ( U , V ) g [ m ] U ( X ) g [ m ] V ( X − U )) g [ m ] W ( X − U − V )
Equating these two and cancelling common terms:
d ( U , V + W ) d ( V , W ) = d ( U + V , W ) d ( U , V ) d(U,V+W)d(V,W)=d(U+V,W)d(U,V) d ( U , V + W ) d ( V , W ) = d ( U + V , W ) d ( U , V )
Now we can make the same equality but permute U , V , W U,V,W U , V , W to V , U , W V,U,W V , U , W :
d ( V , U + W ) d ( U , W ) = d ( U + V , W ) d ( V , U ) d(V,U+W)d(U,W)=d(U+V,W)d(V,U) d ( V , U + W ) d ( U , W ) = d ( U + V , W ) d ( V , U )
Dividing these two equations:
d ( U , V ) d ( V , U ) = d ( V , W ) d ( U , W ) d ( U , V + W ) d ( V , U + W ) \frac{d(U,V)}{d(V,U)}=\frac{d(V,W)}{d(U,W)}\frac{d(U,V+W)}{d(V,U+W)} d ( V , U ) d ( U , V ) = d ( U , W ) d ( V , W ) d ( V , U + W ) d ( U , V + W )
Finally for U , W , V U,W,V U , W , V :
d ( U , V + W ) d ( W , V ) = d ( U + W , V ) d ( U , W ) ⟹ d ( U , V + W ) d ( U , W ) = d ( U + W , V ) d ( W , V ) d(U,V+W)d(W,V)=d(U+W,V)d(U,W) \implies \\
\frac{d(U,V+W)}{d(U,W)}=\frac{d(U+W,V)}{d(W,V)} d ( U , V + W ) d ( W , V ) = d ( U + W , V ) d ( U , W ) ⟹ d ( U , W ) d ( U , V + W ) = d ( W , V ) d ( U + W , V )
So:
d ( U , V ) d ( V , U ) = d ( V , W ) d ( U , W ) d ( U , V + W ) d ( V , U + W ) = d ( V , W ) d ( U + W , V ) d ( W , V ) d ( V , U + W ) \frac{d(U,V)}{d(V,U)}=\frac{d(V,W)}{d(U,W)}\frac{d(U,V+W)}{d(V,U+W)}= \\
\frac{d(V,W)d(U+W,V)}{d(W,V)d(V,U+W)}
d ( V , U ) d ( U , V ) = d ( U , W ) d ( V , W ) d ( V , U + W ) d ( U , V + W ) = d ( W , V ) d ( V , U + W ) d ( V , W ) d ( U + W , V )
e.
Assume S , T ∈ E [ m ] S, T \in E[m] S , T ∈ E [ m ] and choose U , V ∈ E [ m 2 ] : [ m ] U = S , [ m ] V = T U, V \in E[m^2]: [m]U=S, [m]V=T U , V ∈ E [ m 2 ] : [ m ] U = S , [ m ] V = T . Note that the left-hand side in ( d ) (d) ( d ) does not depend on W W W , so we can use W = [ j ] U W=[j]U W = [ j ] U to get the following:
c ( [ n ] U , [ n ] V ) c ( [ n ] V , [ n ] U ) = ( b ) ( d ( U , V ) d ( V , U ) ) n = ( d ) ∏ j = 0 m − 1 d ( V , [ j ] U ) d ( U + [ j ] U , V ) d ( V , U + [ j ] U ) d ( [ j ] U , V ) \frac{c([n]U, [n]V)}{c([n]V, [n]U)}\overset{(b)}=(\frac{d(U,V)}{d(V,U)})^n \overset{(d)}=\prod_{j=0}^{m-1}\frac{d(V,[j]U)d(U+[j]U,V)}{d(V,U+[j]U)d([j]U,V)} c ([ n ] V , [ n ] U ) c ([ n ] U , [ n ] V ) = ( b ) ( d ( V , U ) d ( U , V ) ) n = ( d ) j = 0 ∏ m − 1 d ( V , U + [ j ] U ) d ([ j ] U , V ) d ( V , [ j ] U ) d ( U + [ j ] U , V )
Note that the above terms are a translation-by-U from below terms so they all cancel except the first and the last one, that is j = 0 j=0 j = 0 and j = m − 1 j=m-1 j = m − 1 :
c ( [ n ] U , [ n ] V ) c ( [ n ] V , [ n ] U ) = d ( V , O ) d ( [ m ] U , V ) d ( V , [ m ] U ) d ( O , V ) \frac{c([n]U, [n]V)}{c([n]V, [n]U)} = \frac{d(V,O)d([m]U, V)}{d(V,[m]U)d(O,V)} c ([ n ] V , [ n ] U ) c ([ n ] U , [ n ] V ) = d ( V , [ m ] U ) d ( O , V ) d ( V , O ) d ([ m ] U , V )
Now turning back to ( c ) (c) ( c ) assume W = O W=O W = O then d ( V , [ m ] U ) = d ( V , O ) d(V,[m]U)=d(V,O) d ( V , [ m ] U ) = d ( V , O ) . Next in ( d ) (d) ( d ) set V = O , W = V V=O, W=V V = O , W = V to get d ( [ m ] U , V ) = d ( O , V ) e m ( [ m ] U , [ m ] V ) d([m]U,V)=d(O,V)e_m([m]U,[m]V) d ([ m ] U , V ) = d ( O , V ) e m ([ m ] U , [ m ] V ) this result in
e m ( [ m ] U , [ m ] V ) = c ( [ m ] U , [ m ] V ) c ( [ m ] V , [ m ] U ) ⟹ e m ( S , T ) = c ( S , T ) c ( T , S ) e_m([m]U,[m]V)=\frac{c([m]U,[m]V)}{c([m]V,[m]U)} \implies \\
e_m(S,T)=\frac{c(S,T)}{c(T,S)} e m ([ m ] U , [ m ] V ) = c ([ m ] V , [ m ] U ) c ([ m ] U , [ m ] V ) ⟹ e m ( S , T ) = c ( T , S ) c ( S , T )
f.
We now know that
e m ( S , T ) = c ( S , T ) c ( T , S ) = f T ( X ) f S ( X − T ) f S ( X ) f T ( X − S ) e_m(S,T)=\frac{c(S,T)}{c(T,S)}=\frac{f_T(X)f_S(X-T)}{f_S(X)f_T(X-S)} e m ( S , T ) = c ( T , S ) c ( S , T ) = f S ( X ) f T ( X − S ) f T ( X ) f S ( X − T )
Pick X 0 ∈ E X_0 \in E X 0 ∈ E so that the following two divisors have disjoint support. Define
D S ′ = ( S ) − ( O ) , D T ′ = ( X 0 ) − ( X 0 − T ) ⟹ sum ( D S ′ ) = S , sum ( D T ′ ) = T D'_S = (S)-(O), D'_T=(X_0)-(X_0-T) \implies \\
\text{sum}(D'_S)=S,\text{sum}(D'_T)=T D S ′ = ( S ) − ( O ) , D T ′ = ( X 0 ) − ( X 0 − T ) ⟹ sum ( D S ′ ) = S , sum ( D T ′ ) = T
Then define:
F S ′ : = f S ( X ) , F T ′ : = 1 f T ( X 0 − X ) ⟹ div ( F S ′ ) = m ( S ) − m ( O ) = m D S ′ div ( F T ′ ) = m ( X 0 ) − m ( X 0 − T ) = m D T ′ F'_S:=f_S(X), F'_T:=\frac{1}{f_T(X_0-X)} \implies\\
\text{div}(F'_S)=m(S)-m(O)=mD_S' \\
\text{div}(F'_T)=m(X_0) - m(X_0-T) = mD_T' F S ′ := f S ( X ) , F T ′ := f T ( X 0 − X ) 1 ⟹ div ( F S ′ ) = m ( S ) − m ( O ) = m D S ′ div ( F T ′ ) = m ( X 0 ) − m ( X 0 − T ) = m D T ′
So
e m ( S , T ) = F S ′ ( D T ′ ) F T ′ ( D S ′ ) e_m(S,T)=\frac{F'_S(D'_T)}{F'_T(D'_S)} e m ( S , T ) = F T ′ ( D S ′ ) F S ′ ( D T ′ )
Thus the we proved the theorem for specific divisors. Now let's prove it for general divisors. Consider arbitrary divisors D T D_T D T and D S D_S D S such that
sum ( D S ) = S , sum ( D T ) = T
\text{sum}(D_S)=S, \text{sum}(D_T)=T
sum ( D S ) = S , sum ( D T ) = T
From ( 4.2.4 ) (4.2.4) ( 4.2.4 ) we know that
∃ h 1 , h 2 ∈ F ( E ) : D S = div ( h 1 ) + D S ′ , D T = div ( h 2 ) + D T ′
\exists h_1, h_2 \in F(E): D_S=\text{div}(h_1)+D'_S, D_T=\text{div}(h_2)+D'_T
∃ h 1 , h 2 ∈ F ( E ) : D S = div ( h 1 ) + D S ′ , D T = div ( h 2 ) + D T ′
Define
F S : = F S ′ h 1 m , F T : = F T ′ h 2 m ⟹ div ( F S ) = div ( F S ′ ) + m div ( h ) = m D S ′ + m div ( h ) = m D S div ( F T ) = m D T F_S:=F'_Sh_1^m,F_T:=F'_Th_2^m \implies \\
\text{div}(F_S)=\text{div}(F'_S)+m\text{div}(h)=mD'_S+m\text{div}(h)=mD_S \\
\text{div}(F_T) = mD_T F S := F S ′ h 1 m , F T := F T ′ h 2 m ⟹ div ( F S ) = div ( F S ′ ) + m div ( h ) = m D S ′ + m div ( h ) = m D S div ( F T ) = m D T
First assume that supp ( D S ′ + D S ) ∩ supp ( D T ′ + D T ) = ∅ \text{supp}(D'_S + D_S) \cap \text{supp}(D'_T + D_T) = \empty supp ( D S ′ + D S ) ∩ supp ( D T ′ + D T ) = ∅ then
F T ( D S ) F S ( D T ) = h 2 ( D S ) m F T ′ ( D S ) h 1 ( D T ) m F S ′ ( D T ) = h 2 ( div ( h 1 ) ) m h 2 ( D S ′ ) m F T ′ ( div ( h 1 ) ) F T ′ ( D S ′ ) h 1 ( div ( h 2 ) ) m h 1 ( D T ′ ) m F S ′ ( div ( h 2 ) ) F S ′ ( D T ′ ) \frac{F_T(D_S)}{F_S(D_T)}=\frac{h_2(D_S)^mF'_T(D_S)}{h_1(D_T)^mF'_S(D_T)}=\frac{h_2(\text{div}(h_1))^mh_2(D'_S)^mF'_T(\text{div}(h_1))F'_T(D'_S)}{h_1(\text{div}(h_2))^mh_1(D'_T)^mF'_S(\text{div}(h_2))F'_S(D'_T)} F S ( D T ) F T ( D S ) = h 1 ( D T ) m F S ′ ( D T ) h 2 ( D S ) m F T ′ ( D S ) = h 1 ( div ( h 2 ) ) m h 1 ( D T ′ ) m F S ′ ( div ( h 2 )) F S ′ ( D T ′ ) h 2 ( div ( h 1 ) ) m h 2 ( D S ′ ) m F T ′ ( div ( h 1 )) F T ′ ( D S ′ )
By ( 4.3.4 ) (4.3.4) ( 4.3.4 ) :
h 1 ( div ( h 2 ) ) = h 2 ( div ( h 1 ) ) h 2 ( D S ′ ) m = h 2 ( m D S ′ ) = h 2 ( div ( F S ′ ) ) = F S ′ ( div ( h 2 ) ) h 1 ( D T ′ ) m = F T ′ ( div ( h 1 ) ) h_1(\text{div}(h_2))=h_2(\text{div}(h_1)) \\
h_2(D'_S)^m=h_2(mD'_S)=h_2(\text{div}(F'_S))=F'_S(\text{div}(h_2)) \\
h_1(D'_T)^m=F'_T(\text{div}(h_1)) h 1 ( div ( h 2 )) = h 2 ( div ( h 1 )) h 2 ( D S