Skip to main content

4.3 Pairings

Torsion subgroups

def: m-torsion subgroup

(E,O)EmNE[m]:={PE:[m]P=0}\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &m \in \N \\ \hline \\ &E[m]:=\{P \in E: [m]P=0\} \end{align*}
note

The mm-torsion is essentially the elements of order mm and order dd if dmd \mid m.

In fact it's exactly the same as ker[m]\ker [m],

def: Torsion subgroup

(E,O)EEtors:=mNE[m]\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ \hline \\ &E_{\text{tors}}:=\bigcup_{m \in \N} E[m] \end{align*}

Proposition 4.3.2: m-torsion structure

p=char F(E,O)/FEpm(including p=0)E[m]Z/mZ×Z/mZ\begin{align*} &\sphericalangle \\ &p = \text{char } F \\ &(E, O)/F \in \mathcal E \\ &p \nmid m (\text{including } p=0) \\ \hline \\ &E[m]\cong \Z/m\Z \times \Z/m\Z \end{align*}

Proof

By (4.2.9)(4.2.9) [m][m] is separable so by (4.2.7)(4.2.7) and (4.2.10)(4.2.10):

m2=deg[m]=ker[m]E[m]m^2=\deg[m]=|\ker [m]|\equiv|E[m]|

Note that for every dmd \mid m we also have E[d]=d2|E[d]|=d^2 so by (2.2.39)(2.2.39) we have:

E[m]Z/mZ×Z/mZE[m]\cong \Z/m\Z \times \Z/m\Z

\square

note

Though (E,O)(E,O) is defined over FF it still has points in F\overline{F} and so does E[m]E[m]. It might be surprising that that we can grow mm and get arbitrary large order of E[m]E[m] given that we count points of EFqE_{\mathbb F_q} in (4.2.11)(4.2.11). But again we're considering points in E=EFE=E_{\overline{\mathbb F}} and this group has infinite number of points since F\overline {\mathbb F} is infinite.

Now assume mm is prime and we'll rename it to rr to signify that its primeness. So we have E[r]Z/rZ×Z/rZE[r]\cong \Z/r\Z \times \Z/r\Z. In this case the only non-trivial subgroups would have order rr since only rr2r \mid r^2. Note that each Z/rZ\Z/r\Z is cyclic in this case any element will generate the whole group. Moreover, the same is true for any subgroup of order rr in E[r]E[r]. We'll have the following r+1r+1 subgroups of order rr:

(0,1)G(1,0)G(1,1)G(1,2)G(1,r1)G\lang (0,1) \rang_G \\ \lang (1,0) \rang_G \\ \lang (1,1) \rang_G \\ \lang (1,2) \rang_G \\ \ldots \\ \lang (1,r-1) \rang_G \\

Why is this list exaustive and each group is unique? Because if we take any element (a,b)(a, b) then if a=0a =0, the element is a part of (0,1)G\lang (0,1) \rang_G, if b=0b=0 it will be a part of (1,0)G\lang (1,0) \rang_G. In all other cases this element would be a part of one and exactly of the last r1r-1 groups.

Note that (0,0)(0,0) is part of every group, other than that each element is unique to its own group. We can cross-check it by counting orders r(r+1)r=r2r(r+1)-r=r^2 (r-r for removing (0,0)(0,0) duplicates). This gives the following visualization for subgroups of order rr in rr-torsion:

Torsion

Torsion

Of course we use here integers but on elliptic curve this will be elliptic curve points.

Propostion 4.3.1: Weil conjectures for elliptic curves

q=pn,pP(E,O)/FqEt:=EFqq1χ(x):=x2tx+qα,β:χ(α)=χ(β)=0ϕ:=ρnα=β=qEFqk=qk+1αkβkϕ2[t]ϕ+[q]=[0]\begin{align*} &\sphericalangle \\ &q=p^n, p \in \mathfrak P \\ &(E,O)/\mathbb F_q \in \mathcal E \\ &t:= |E_{\mathbb F_q}|-q-1 \\ &\chi(x):=x^2-tx+q \\ & \alpha, \beta: \chi(\alpha)=\chi(\beta)=0 \\ & \phi:=\rho_{\rightsquigarrow}^n \\ \hline \\ &\begin{align*} &|\alpha|=|\beta|=\sqrt q \hspace{0.5cm} \tag{a}\\ &|E_{\mathbb F_{q^k}}|=q^k+1-\alpha^k-\beta^k \hspace{0.5cm} \tag{b}\\ &\phi^2 - [t]\circ \phi + [q] = [0] \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Note that we have two eigenvalues of Frobenius. The first one is 11 because if we assume ϕ(P)=P\phi(P)=P then

ϕ2[t]ϕ+[q]=[1][t]+[q]=[1t+q]=[EFq]=[0]\phi^2 - [t]\circ \phi + [q]=[1] - [t] + [q] = [1-t+q]=[E_{\mathbb F_q}]=[0]

Since the product of roots of characteriscic polynomial is qq, the second root is qq.

So when we have rqk1r \mid q^k-1 we have a torsion subgroup of size rr over Fq\mathbb F_q. This will be part of the eigenspace of Frobenius with eigenvalue 1.

Consider a trace mapping:

T(P):=σGal(Fqk/Fq)σ(P)=t=0k1(xqi,yqi)T(P):=\sum_{\sigma \in \text{Gal}(\mathbb F_{q^k}/\mathbb F_{q})}\sigma(P)=\sum_{t=0}^{k-1}(x^{q^i},y^{q^i})

Note that it will fix Fq\mathbb F_q since the any Galois action will just permute the summands. Thus T:FqkFq\text{T}: \mathbb F_{q^k} \to \mathbb F_q, in particular it sends the whole torsion to E[r]FqE[r]_{\mathbb F_q} subgroup. We will call this subgroup a trace-image subgroup. Note that trace will fix each point of the trace-image subgroup, that is will send it to itself.

Now let's define another group by using and anti-trace map

Ta(P):=[k]PT(P)T^a(P):=[k]P-T(P)

If we consider it as the map of the whole torsion then it will be a subgroup of this torsion because Ta(P1+P2):=[k](P1+P2)T(P1+P2)T^a(P_1+P_2):=[k](P_1+P_2)-T(P_1+P_2). But we know that if there's a point PP in torsion that is outside of Fq\mathbb F_q then [k]P[k]P is also outside, so this subgroup will be not empty and different from trace-image subgroup. Also note that

T(Ta(P))=Ta(P)+ϕ(Ta(P))++ϕk1(Ta(P))=[k]PTa(P)+[k]ϕ(P)T(P)++[k]ϕk1(P)T(P)=[k]Ta(P)[k]Ta(P)=OT(T^a(P))=T^a(P)+\phi(T^a(P))+\ldots + \phi^{k-1}(T^a(P))= \\ [k]P-T^a(P) + [k]\phi(P)-T(P)+\ldots + [k]\phi^{k-1}(P)-T(P) = \\ [k]T^a(P)-[k]T^a(P)=O

So we call this group a trace-kernel subgroup. As we noted above this group is not empty so the kernel is at least the size of this group which is rr. But kernel cannot be the whole torsion because the trace-image group is not empty. So the trace-kernel subgroup is exactly the kernel of the trace map.

Finally if there's a point PE[r]:ϕ(P)=[q]PP\in E[r]: \phi(P)=[q]P then T(P)=P+[q]P++[qk1]P=[(qk1)/(q1)]P=OT(P)=P+[q]P+\ldots+[q^{k-1}]P=[(q^k-1)/(q-1)]P=O. So we can say that trace-kernel subgroup is the intersection of torsion an the eigenspace of Frobenius with eigenvalue qq.

To sum up we have two groups:

G1:=T(E[r])trace-image subgroupϕ(P)=PG2:=kerE[r]Ttrace-kernel subgroupϕ(P)=[q]P\begin{array}{c|c|c} \mathbb G_1: = T(E[r]) & \text{trace-image subgroup} & \phi(P)=P \\ \mathbb G_2 := \ker_{E[r]} T & \text{trace-kernel subgroup} & \phi(P)=[q]P \\ \end{array}

Weil pairing

We want to have a pairing function that maps two points of elliptic curve to a field that is bilinear, non-trivial and Galois invariant.

Consider a field FF with charF=p\text{char} F=p, m:pmm: p \nmid m and a point QE[m]Q \in E[m]. Then since [m]Q[m]O=O[m]Q-[m]O=O by (4.2.4)(4.2.4) there's a function fm,QF(E)f_{m,Q} \in F(E):

div(fm,Q)=m(Q)m(O)\text{div}(f_{m, Q})=m(Q)-m(O)

Since [m]const[m]\ne \text{const} and it's a morphism then by (3.4.5)(3.4.5) it's surjective so we can find a point

Q[m]1:[m]Q[m]1=QQ_{[m]^{-1}}:[m]Q_{[m]^{-1}}=Q

Consider a divisor:

D:=[m](Q)[m](O)=S[m]1(Q)e[m](S)(S)T[m]1(O)e[m](T)(T)D:=[m]^*(Q)-[m]^*(O)=\sum_{S \in [m]^{-1}(Q)}e_{[m]}(S)(S)-\sum_{T \in [m]^{-1}(O)}e_{[m]}(T)(T)

Recall that by (4.2.9)(4.2.9) [m][m] is separable so it's unramified and e[m]=1e_{[m]}=1. Then note that preimage of (O)(O) is ker[m]E[m]\ker [m] \equiv E[m]. And preimage of QQ is Q[m]1+E[m]Q_{[m]^{-1}}+E[m] so we have:

D=RE[m](Q[m]1+R)(R)D= \sum_{R \in E[m]}(Q_{[m]^{-1}}+R)-(R)

Note that the degree of this divisor is obvoisly 00 and RE[m]Q[m]1+RR=RE[m]Q[m]1=[m2]Q[m]1=[m]Q=O\sum_{R \in E[m]}Q_{[m]^{-1}}+R-R=\sum_{R \in E[m]}Q_{[m]^{-1}}=[m^2]Q_{[m]^{-1}}=[m]Q=O, so DD is principal and there's a function gm,Qg_{m,Q}:

div(gm,Q)=[m](Q)[m](O)=RE[m](Q[m]1+R)(R)\text{div}(g_{m,Q})=[m]^*(Q)-[m]^*(O)=\sum_{R \in E[m]}(Q_{[m]^{-1}}+R)-(R)

Then notice that:

(fm,Q[m])(P)=fm,Q([m]P)div(fm,Q[m])=mT[m]1(Q)(T)mS[m]1(O)(S)=RE[m]m(Q[m]1+R)m(R)div(gm,Qm)=RE[m]m(Q[m]1+R)m(R)=div(fm,Q[m])    div(gm,Qmf[m])=0    fm,Q[m]=cgm,Qm(f_{m, Q} \circ [m])(P) = f_{m, Q}([m]P) \\ \text{div}(f_{m, Q} \circ [m]) = m\sum_{T \in [m]^{-1}(Q)}(T)-m\sum_{S \in [m]^{-1}(O)}(S)= \\ \sum_{R \in E[m]}m(Q_{[m]^{-1}}+R)-m(R) \\ \text{div}(g_{m, Q}^m) = \sum_{R \in E[m]}m(Q_{[m]^{-1}}+R)-m(R) = \text{div}(f_{m, Q} \circ [m]) \implies \\ \text{div}(\frac{g_{m, Q}^m}{f \circ [m]})=0 \implies f_{m, Q} \circ [m] = c g_{m, Q}^m

Since gmg^m is derived from divisor and thus defined up to a constant we can assume c=1c = 1 and so:

fm,Q[m]=gm,Qmf_{m, Q} \circ [m] = g_{m, Q}^m

Next take some point PE[m]P \in E[m] and any point XEX \in E then

(gm,Q(X+P)gm,Q(X))m=fm,Q([m]X+[m]P)fm,Q([m]X)=1(\frac{g_{m, Q}(X+P)}{g_{m, Q}(X)})^m=\frac{f_{m, Q}([m]X+[m]P)}{f_{m, Q}([m]X)}=1

So the mapping ϕ:EP1,Xgm,Q(X+P)gm,Q(X)\phi: E \to \mathbb P^1, X \mapsto \frac{g_{m, Q}(X+P)}{g_{m, Q}(X)} take finite number of values in F\overline F so it's not surjective and thus by (3.4.5)(3.4.5) it's consant. Moreover that value of ϕ\phi is an mm-th root of unity.

We'll denote the cyclic group of mm-th roots of unity as μm:={xF:xm=1}\mu_m:=\{x \in \overline F: x^m=1\}.

def: Weil pairing

(E,O)/FEcharFmem(P,Q):E[m]×E[m]μm,P,Qgm,Q(X+P)gm,Q(X)\begin{align*} &\sphericalangle \\ &(E, O)/F \in \mathcal E \\ &\text{char} F \nmid m \\ \hline \\ &e_m(P,Q): E[m] \times E[m] \to \mu_m, P,Q \mapsto \frac{g_{m, Q}(X+P)}{g_{m, Q}(X)} \end{align*}

Proposition 4.3.3: Weil pairing properties

(E,O)/FEcharFmPi,QiE[m]em(P1+P2,Q)=em(P1,Q)em(P2,Q)em(P,Q1+Q2)=em(P,Q1)em(P,Q2)em(P,P)=1em(P,Q)=em(Q,P)1σGalF/F:em(P,Q)σ=em(Pσ,Qσ)PE[mm],QE[m]:emm(P,Q)=em([m]P,Q)(SE[m]:em(S,T)=1)    T=O\begin{align*} &\sphericalangle \\ &(E, O)/F \in \mathcal E \\ &\text{char} F \nmid m \\ &P_i, Q_i \in E[m] \\ \hline \\ &\begin{align*} &e_m(P_1+P_2,Q)=e_m(P_1,Q)e_m(P_2,Q) \hspace{0.5cm} \tag{a}\\ &e_m(P,Q_1+Q_2)=e_m(P,Q_1)e_m(P,Q_2) \hspace{0.5cm} \tag{b}\\ &e_m(P,P)=1 \hspace{0.5cm} \tag{c}\\ &e_m(P,Q)=e_m(Q,P)^{-1} \hspace{0.5cm} \tag{d}\\ &\forall \sigma \in \text{Gal}_{\overline F/F}: e_m(P,Q)^\sigma = e_m(P^\sigma ,Q^\sigma )\hspace{0.5cm} \tag{e}\\ &\forall P \in E[mm'], Q \in E[m]: e_{mm'}(P ,Q)=e_{m}([m']P ,Q) \hspace{0.5cm} \tag{f}\\ & (\forall S \in E[m]: e_m(S,T)=1) \implies T = O\hspace{0.5cm} \tag{g}\\ \end{align*} \end{align*}

Proof

a.

em(P1+P2,Q)=gm,Q(X+P1+P2)gm,Q(X)=gm,Q(X+P1+P2)gm,Q(X+P1)gm,Q(X+P1)gm,Q(X)=e(P1,Q)e(P2,Q)e_m(P_1+P_2, Q)=\frac{g_{m, Q}(X+P_1+P_2)}{g_{m, Q}(X)}= \\\frac{g_{m, Q}(X+P_1+P_2)}{g_{m, Q}(X+P_1)}\frac{g_{m, Q}(X+P_1)}{g_{m, Q}(X)} = e(P_1,Q)e(P_2,Q)

b.

Consider a function hh with divisor:

div(h)=(Q1+Q2)(Q1)(Q2)+(O)\text{div}(h)=(Q_1+Q_2)-(Q_1)-(Q_2)+(O)

Then we have

div(fm,Q1+Q2fm,Q1fm,Q2)=m(Q1+Q2)m(O)m(Q1)+m(O)m(Q2)+m(O)=m(Q1+Q2)m(Q1)m(Q2)+m(O)=mdiv(h)=div(hm)    fm,Q1+Q2=cfm,Q1fm,Q2hm\text{div}(\frac{f_{m, Q_1+Q_2}}{f_{m, Q_1}f_{m, Q_2}})=m(Q_1+Q_2)-m(O)-m(Q_1)+m(O)-m(Q_2)+m(O) =\\ m(Q_1+Q_2)-m(Q_1)-m(Q_2)+m(O)=m\text{div}(h)=\text{div}(h^m) \implies \\ f_{m, Q_1+Q_2}=cf_{m, Q_1}f_{m, Q_2}h^m

Now let's compose it with [m][m]:

gm,Q1+Q2m=fm,Q1+Q2m=c(fm,Q1m)(fm,Q2m)(hmm)=cgm,Q1mgm,Q2m(hmm)    gm,Q1+Q2=cgm,Q1gm,Q2(hm)g^m_{m, Q_1+Q_2}=f_{m, Q_1+Q_2} \circ m=c(f_{m, Q_1} \circ m)(f_{m, Q_2} \circ m)(h^m \circ m) = \\ cg^m_{m, Q_1}g_{m, Q_2}^m(h^m \circ m) \implies \\ g_{m, Q_1+Q_2}=cg_{m, Q_1}g_{m, Q_2}(h \circ m)

So

em(P,Q1+Q2)=gm,Q1+Q2(X+P)gm,Q1+Q2(X)=gm,Q1(X+P)gm,Q2(X+P)h([m]X+[m]P)gm,Q1(X)gm,Q2(X)h([m]X)=em(P,Q1)em(P,Q2)e_m(P,Q_1+Q_2)=\frac{g_{m, Q_1+Q_2}(X+P)}{g_{m, Q_1+Q_2}(X)}=\\ \frac{g_{m, Q_1}(X+P)g_{m, Q_2}(X+P)h([m]X+[m]P)}{g_{m, Q_1}(X)g_{m, Q_2}(X)h([m]X)}=e_m(P,Q_1)e_m(P,Q_2)

c.

Consider a translation-by-P map τP:EE,QQ+P\tau_P: E \to E, Q \mapsto Q+P. Then

div(k=0m1fm,Pτ[k]P)=mk=0m1([1i]P)([i]P)=0\text{div}(\prod_{k=0}^{m-1}f_{m,P} \circ \tau_{[k]P}) = m\sum_{k=0}^{m-1}([1-i]P)-([-i]P)=0

So we have:

XE:k=0m1(fm,Pτ[k]P)(X)=const\forall X \in E: \prod_{k=0}^{m-1}(f_{m,P} \circ \tau_{[k]P})(X)=\text{const}

Now taking P[m]1:[m]P[m]1=PP_{[m]^{-1}}:[m]P_{[m]^{-1}}=P we have:

(fm,P[m]τ[k]P[m]1)(X)=fm,P([m](X+[k]P[m]1))=fm,P([m]X+[k]P)XE:k=0m1(gm,PmτP[m]1)(X)=k=0m1(fm,P[m]τ[k]P[m]1)(X)=k=0m1fm,P([m]X+[k]P)(f_{m,P} \circ [m] \circ \tau_{[k]P_{[m]^{-1}}})(X)=f_{m,P}([m](X+[k]P_{[m]^{-1}}))= \\ f_{m,P}([m]X+[k]P) \\ \forall X \in E: \prod_{k=0}^{m-1}(g_{m,P}^m \circ \tau_{P_{[m]^{-1}}})(X) = \prod_{k=0}^{m-1}(f_{m,P} \circ [m] \circ \tau_{[k]P_{[m]^{-1}}})(X) =\\ \prod_{k=0}^{m-1}f_{m,P}([m]X+[k]P)

So it follows that:

k=0m1gm,PmτP[m]1=const    k=0m1gm,PτP[m]1=const\prod_{k=0}^{m-1}g_{m,P}^m \circ \tau_{P_{[m]^{-1}}} = \text{const} \implies \\ \prod_{k=0}^{m-1}g_{m,P} \circ \tau_{P_{[m]^{-1}}}= \text{const}

In particular taking X=X+P[m]1X' = X+P_{[m]^{-1}} so

k=0m1gm,P(X+[k]P[m]1)=k=0m1gm,P(X+[k+1]P[m]1)\prod_{k=0}^{m-1}g_{m,P}(X+[k]P_{[m]^{-1}})=\prod_{k=0}^{m-1}g_{m,P}(X+[k+1]P_{[m]^{-1}})

Cancelling similar terms:

gm,P(X)=gm,P(X+[m]P[m]1)=gm,P(X+P)    em(P,P)=1g_{m,P}(X)=g_{m,P}(X+[m]P_{[m]^{-1}})=g_{m,P}(X+P) \implies \\ e_m(P,P)=1

d.

em(P+Q,P+Q)=em(P,P)em(P,Q)em(Q,P)em(Q,Q)    em(P,Q)em(Q,P)=1e_m(P+Q,P+Q)=e_m(P,P)e_m(P,Q)e_m(Q,P)e_m(Q,Q) \implies \\ e_m(P,Q)e_m(Q,P)=1

e.

Recall that for any fF(E),PE:f(P)σ=fσ(Pσ)f \in F(E), P \in E: f(P)^\sigma = f^{\sigma}(P^\sigma). Then

div(fm,Q)=m(Q)m(O)div(fm,Qσ)=div(fm,Q)σ=m(Qσ)m(O)=div(fm,Qσ)    fm,Qσ=fm,Qσ\text{div}(f_{m, Q})=m(Q)-m(O) \\ \text{div}(f^\sigma_{m,Q})=\text{div}(f_{m,Q})^\sigma=m(Q^\sigma)-m(O)=\text{div}(f_{m,Q^\sigma}) \implies \\ f^\sigma_{m,Q} = f_{m,Q^\sigma}

The same is true for gg, so:

em(P,Q)σ=gm,Qσ(Xσ+Pσ)gm,Qσ(Xσ)=gm,Qσ(Xσ+Pσ)gm,Qσ(Xσ)=em(Pσ,Qσ)e_m(P,Q)^\sigma=\frac{g_{m, Q}^{\sigma}(X^{\sigma}+P^{\sigma})}{g^{\sigma}_{m, Q}(X^{\sigma})}= \frac{g_{m, Q^{\sigma}}(X^{\sigma}+P^{\sigma})}{g_{m, Q^{\sigma}}(X^{\sigma})}=e_m(P^\sigma, Q^\sigma)

f.

Notice that:

div(fm,Qm)=mm(Q)mm(O)(gm,Q[m])mm=(fm,Q[mm])m=fmm,Q[mm]=gmm,Q\text{div}(f_{m, Q}^{m'})=m'm(Q)-m'm(O) \\ (g_{m, Q}\circ [m'])^{mm'}=(f_{m, Q}\circ [mm'])^{m'}=f_{mm',Q}\circ [mm']=g_{mm',Q}

So

emm(P,Q)=gm,Q[m](X+P)gm,Q[m](X)=gm,Q(Y+[m]P)gm,Q(Y)=em([m]P,Q)e_{mm'}(P,Q)=\frac{g_{m, Q}\circ [m'](X+P)}{g_{m, Q}\circ [m'](X)}=\frac{g_{m, Q}(Y+[m']P)}{g_{m, Q}(Y)}=e_{m}([m']P,Q)

g.

We will not prove it here.

\square

This definition of pairing works fine but it's a bit tedious for real world calculation. After all it involved finding ff with divisor m(Q)m(O)m(Q)-m(O) and gg with divisor [m](Q)[m](O)[m]^*(Q)-[m]^*(O) and then relate those two functions. We want to narrow it down to at least finding functions with m(Q)m(O)m(Q)-m(O).

We start this journey by defining how to calculate function of divisor.

def: Divisor support

D=nP(P)supp(D):={P:nP0}\begin{align*} &\sphericalangle \\ &D = \sum n_P(P) \\ \hline \\ &\text{supp}(D):=\{P: n_P \ne 0\} \end{align*}

def: Divisor sum

D=nP(P)sum(D):=[nP]P\begin{align*} &\sphericalangle \\ &D = \sum n_P(P) \\ \hline \\ &\text{sum}(D):=\sum [n_P]P \end{align*}

def: Function evaluation on divisor

(E,O)ED=nP(P)fF(E)supp(div(f))supp(D)=f(D):=Psupp(D)f(P)nP\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &D = \sum n_P(P) \\ &f \in F(E) \\ &\text{supp}(\text{div}(f)) \cap \text{supp}(D) = \empty \\ \hline \\ &f(D):=\prod_{P \in \text{supp}(D)} f(P)^{n_P} \end{align*}

Note that this definition make sense if supports are disjoint. Otherwise we'll have 00 on common point which will bring the whole evaluation to 00.

Proposition 4.3.4: Weil reciprocity

(E,O)Ef,gF(E)supp(div(f))supp(div(g))=g(div(f))=f(div(g))\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &f,g \in F(E) \\ &\text{supp}(\text{div}(f)) \cap \text{supp}(\text{div}(g)) = \empty \\ \hline \\ &g(\text{div}(f))=f(\text{div}(g)) \end{align*}

Proof

First, let's prove for the case E=P1E = \mathbb P^1. Consider two polynomials f=(xα1)(xαn),g=(xβ1)(xβk)f = (x-\alpha_1)\ldots(x-\alpha_n), g=(x-\beta_1)\ldots(x-\beta_k), where roots might be repeating. Then consider a following table:

α1β1αnβkαnβ1αnβk\begin{matrix} \alpha_1-\beta_1 & \ldots & \alpha_n-\beta_k \\ \ldots \\ \alpha_n-\beta_1 & \ldots & \alpha_n-\beta_k \end{matrix}

Notice that g(div(f))g(\text{div}(f)) and f(div(g))f(\text{div}(g)) is the product of all terms in the table above (g(div(f))g(\text{div}(f)) goes by rows and f(div(g))f(\text{div}(g)) goes by columns). It is true only each term differs by 1-1 factor, so we get an "error" by (1)mk(-1)^{mk}. But remeber that we're in a projective space so ff will have nn poles (or rather the pole of order nn) and gg will have kk poles. We'll have the same mismatch (1)mk(-1)^{mk} there so the errors will cancel.

Now let's prove for arbitrary EE. It can be proved that

f(ϕD)=(ϕf)(D),f(ϕD)=(ϕf)(D)f(\phi^*D)=(\phi_*f)(D), f(\phi_*D)=(\phi^*f)(D)

Consider a mapping:

ϕ(P)={[g(P),1],gOC,Pr[1,0],gOC,Pr\phi(P) = \begin{cases} [g(P), 1], g \in \mathcal O^r_{C,P} \\ [1,0], g \notin \mathcal O^r_{C,P} \end{cases}

Then

f(div(g))=f(ϕ((0)()))=(ϕf)((0)())=(ϕf)(div(x))f(\text{div}(g))=f(\phi^*((0)-(\infty)))=(\phi_*f)((0)-(\infty))= \\ (\phi_*f)(\text{div}(x))

Now notice that the latter are actually functions in P1\mathbb P^1 so

f(div(g))=(ϕf)(div(x))=x(div(ϕf))=x(ϕdiv(f))=ϕx(div(f))=g(div(f))f(\text{div}(g))=(\phi_*f)(\text{div}(x))=x(\text{div}(\phi_*f))=x(\phi_*\text{div}(f))= \\ \phi^*x(\text{div}(f))=g(\text{div}(f))

\square

def: Alternative definition of Weil pairing

(E,O)EmN:charFmS,TE[m]DS,DTDiv0(E)sum(DS)=S,sum(DT)=Tsupp(DS)supp(DT)=hS,hTF(E):div(hS)=mDS,div(hT)=mDTe^m(S,T):=hT(DS)hS(DT)\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &m \in \N: \text{char}F \nmid m \\ &S, T \in E[m] \\ &D_S, D_T \in \text{Div}^0(E) \\ &\text{sum}(D_S)=S,\text{sum}(D_T)=T \\ &\text{supp}(D_S) \cap \text{supp}(D_T) = \empty \\ &h_S, h_T \in F(E):\text{div}(h_S)=mD_S, \text{div}(h_T)=mD_T \\ \hline \\ &\hat e_m(S,T):=\frac{h_T(D_S)}{h_S(D_T)} \end{align*}

Next we want to prove a serios of propositions that will lead us to the conclusion that this definition is equivalent.

From now on we'll assume that we always work in a torsion of the size mm so instead of writing fm,Pf_{m,P} we'll just write fPf_P.

First define two quantities:

c([m]V,[m]W):=f[m]V+[m]W(X)f[m]V(X)f[m]W(X[m]V)d(V,W):=g[m]V+[m]W(X)g[m]V(X)g[m]W(XV)c([m]V,[m]W):=\frac{f_{[m]V+[m]W}(X)}{f_{[m]V}(X)f_{[m]W}(X-[m]V)} \\ d(V,W):=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)} \\

Proposition 4.3.5: The alternative definition of Weil pairing

(E,O)EmN:charFmS,TE[m]c([m]V,[m]W),d(V,W)=const(X)d(V,W)m=c([m]V,[m]W)V,W,UE[m2]    d(V,W+[m]U)=d(V,W)V,W,UE[m2]    d(V+[m]U,W)=d(V,W)em([m]U,[m]W)d(U,V)d(V,U)=d(V,W)d(U+W,V)d(V,U+W)d(W,V)em(S,T)=c(S,T)c(T,S)e^m(S,T)=em(S,T)\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &m \in \N: \text{char}F \nmid m \\ &S, T \in E[m] \\ \hline \\ &\begin{align*} & c([m]V,[m]W), d(V,W) = \text{const}(X)\hspace{0.5cm} \tag{a}\\ & d(V,W)^m=c([m]V,[m]W)\hspace{0.5cm} \tag{b}\\ & V,W,U \in E[m^2] \implies d(V,W+[m]U)=d(V,W)\hspace{0.5cm} \tag{c}\\ & V,W,U \in E[m^2] \implies d(V+[m]U,W)=d(V,W)e_m([m]U,[m]W)\hspace{0.5cm} \tag{d}\\ & \frac{d(U,V)}{d(V,U)}=\frac{d(V,W)d(U+W,V)}{d(V,U+W)d(W,V)}\hspace{0.5cm} \tag{e}\\ & e_m(S,T)=\frac{c(S,T)}{c(T,S)}\hspace{0.5cm} \tag{f}\\ & \hat e_m(S,T)=e_m(S,T)\hspace{0.5cm} \tag{g}\\ \end{align*} \end{align*}

Proof

a.

First note that

d(V,W)(X)m=f[m]V+[m]W([m]X)f[m]V([m]X)f[m]W([m]X[m]V)=c([m]W,[m]V)([m]X)d(V,W)(X)^m=\frac{f_{[m]V+[m]W}([m]X)}{f_{[m]V}([m]X)f_{[m]W}([m]X-[m]V)}= \\ c([m]W,[m]V)([m]X)

So we have:

div(c(mV,mW))=m([m]V+[m]W)m(O)(m([m]V)m(O))(m([m]V+[m]W)m([m]V))=0\text{div}(c(mV,mW))= \\ m([m]V+[m]W)-m(O)-(m([m]V)-m(O))- \\ -(m([m]V+[m]W)-m([m]V)) = 0\\

This implies that c([m]W,[m]V)c([m]W,[m]V) is const as a function of XX and so is d(V,W)md(V,W)^m, so 0=div(d(V,W)m)=mdiv(d(V,W))    div(d(V,W))=00=\text{div}(d(V,W)^m)=m\text{div}(d(V,W))\implies \text{div}(d(V,W)) = 0. And so d(V,W)d(V,W) is const as well.

b.

Follows immediately from (a)(a)

c.

Note that since WE[m2]W \in E[m^2] [m](W+[m]U)=[m]W[m](W+[m]U)=[m]W so

d(V,W+[m]U)=g[m]V+[m]W(X)g[m]V(X)g[m]W(XV)=d(V,W)d(V,W+[m]U)=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)}=d(V,W)

d.

d(V+[m]U,W)=g[m]V+[m]W(X)g[m]V(X)g[m]W(XV[m]U)=g[m]V+[m]W(X)g[m]V(X)g[m]W(XV)g[m]W(XV)g[m]W(XV[m]U)=d(V,W)en([m]U,[m]W)d(V+[m]U,W)=\frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V-[m]U)}= \\ \frac{g_{[m]V+[m]W}(X)}{g_{[m]V}(X)g_{[m]W}(X-V)}\cdot \frac{g_{[m]W}(X-V)}{g_{[m]W}(X-V-[m]U)} = \\ d(V,W)e_n([m]U,[m]W)

For the last equation assume X=XV[m]UX'=X-V-[m]U

e.

First consider some equations for U,V,WU, V, W

g[m]U+([m]V+[m]W)(X)=d(U,V+W)g[m]U(X)g[m]V+[m]W(XU)=d(U,V+W)d(V,W)g[m]U(X)g[m]V(XU)g[m]W(XUV)g_{[m]U+([m]V+[m]W)}(X)=d(U,V+W)g_{[m]U}(X)g_{[m]V+[m]W}(X-U)= \\ d(U,V+W)d(V,W)g_{[m]U}(X)g_{[m]V}(X-U)g_{[m]W}(X-U-V)

On the other hand:

g([m]U+[m]V)+[m]W(X)=d(U+V,W)g[m]U+[m]V(X)g[m]W(XUV)=d(U+V,W)d(U,V)g[m]U(X)g[m]V(XU))g[m]W(XUV)g_{([m]U+[m]V)+[m]W}(X)=d(U+V,W)g_{[m]U+[m]V}(X)g_{[m]W}(X-U-V)= \\ d(U+V,W)d(U,V)g_{[m]U}(X)g_{[m]V}(X-U))g_{[m]W}(X-U-V)

Equating these two and cancelling common terms:

d(U,V+W)d(V,W)=d(U+V,W)d(U,V)d(U,V+W)d(V,W)=d(U+V,W)d(U,V)

Now we can make the same equality but permute U,V,WU,V,W to V,U,WV,U,W:

d(V,U+W)d(U,W)=d(U+V,W)d(V,U)d(V,U+W)d(U,W)=d(U+V,W)d(V,U)

Dividing these two equations:

d(U,V)d(V,U)=d(V,W)d(U,W)d(U,V+W)d(V,U+W)\frac{d(U,V)}{d(V,U)}=\frac{d(V,W)}{d(U,W)}\frac{d(U,V+W)}{d(V,U+W)}

Finally for U,W,VU,W,V:

d(U,V+W)d(W,V)=d(U+W,V)d(U,W)    d(U,V+W)d(U,W)=d(U+W,V)d(W,V)d(U,V+W)d(W,V)=d(U+W,V)d(U,W) \implies \\ \frac{d(U,V+W)}{d(U,W)}=\frac{d(U+W,V)}{d(W,V)}

So:

d(U,V)d(V,U)=d(V,W)d(U,W)d(U,V+W)d(V,U+W)=d(V,W)d(U+W,V)d(W,V)d(V,U+W)\frac{d(U,V)}{d(V,U)}=\frac{d(V,W)}{d(U,W)}\frac{d(U,V+W)}{d(V,U+W)}= \\ \frac{d(V,W)d(U+W,V)}{d(W,V)d(V,U+W)}

e.

Assume S,TE[m]S, T \in E[m] and choose U,VE[m2]:[m]U=S,[m]V=TU, V \in E[m^2]: [m]U=S, [m]V=T. Note that the left-hand side in (d)(d) does not depend on WW, so we can use W=[j]UW=[j]U to get the following:

c([n]U,[n]V)c([n]V,[n]U)=(b)(d(U,V)d(V,U))n=(d)j=0m1d(V,[j]U)d(U+[j]U,V)d(V,U+[j]U)d([j]U,V)\frac{c([n]U, [n]V)}{c([n]V, [n]U)}\overset{(b)}=(\frac{d(U,V)}{d(V,U)})^n \overset{(d)}=\prod_{j=0}^{m-1}\frac{d(V,[j]U)d(U+[j]U,V)}{d(V,U+[j]U)d([j]U,V)}

Note that the above terms are a translation-by-U from below terms so they all cancel except the first and the last one, that is j=0j=0 and j=m1j=m-1:

c([n]U,[n]V)c([n]V,[n]U)=d(V,O)d([m]U,V)d(V,[m]U)d(O,V)\frac{c([n]U, [n]V)}{c([n]V, [n]U)} = \frac{d(V,O)d([m]U, V)}{d(V,[m]U)d(O,V)}

Now turning back to (c)(c) assume W=OW=O then d(V,[m]U)=d(V,O)d(V,[m]U)=d(V,O). Next in (d)(d) set V=O,W=VV=O, W=V to get d([m]U,V)=d(O,V)em([m]U,[m]V)d([m]U,V)=d(O,V)e_m([m]U,[m]V) this result in

em([m]U,[m]V)=c([m]U,[m]V)c([m]V,[m]U)    em(S,T)=c(S,T)c(T,S)e_m([m]U,[m]V)=\frac{c([m]U,[m]V)}{c([m]V,[m]U)} \implies \\ e_m(S,T)=\frac{c(S,T)}{c(T,S)}

f.

We now know that

em(S,T)=c(S,T)c(T,S)=fT(X)fS(XT)fS(X)fT(XS)e_m(S,T)=\frac{c(S,T)}{c(T,S)}=\frac{f_T(X)f_S(X-T)}{f_S(X)f_T(X-S)}

Pick X0EX_0 \in E so that the following two divisors have disjoint support. Define

DS=(S)(O),DT=(X0)(X0T)    sum(DS)=S,sum(DT)=TD'_S = (S)-(O), D'_T=(X_0)-(X_0-T) \implies \\ \text{sum}(D'_S)=S,\text{sum}(D'_T)=T

Then define:

FS:=fS(X),FT:=1fT(X0X)    div(FS)=m(S)m(O)=mDSdiv(FT)=m(X0)m(X0T)=mDTF'_S:=f_S(X), F'_T:=\frac{1}{f_T(X_0-X)} \implies\\ \text{div}(F'_S)=m(S)-m(O)=mD_S' \\ \text{div}(F'_T)=m(X_0) - m(X_0-T) = mD_T'

So

em(S,T)=FS(DT)FT(DS)e_m(S,T)=\frac{F'_S(D'_T)}{F'_T(D'_S)}

Thus the we proved the theorem for specific divisors. Now let's prove it for general divisors. Consider arbitrary divisors DTD_T and DSD_S such that

sum(DS)=S,sum(DT)=T \text{sum}(D_S)=S, \text{sum}(D_T)=T

From (4.2.4)(4.2.4) we know that

h1,h2F(E):DS=div(h1)+DS,DT=div(h2)+DT \exists h_1, h_2 \in F(E): D_S=\text{div}(h_1)+D'_S, D_T=\text{div}(h_2)+D'_T

Define

FS:=FSh1m,FT:=FTh2m    div(FS)=div(FS)+mdiv(h)=mDS+mdiv(h)=mDSdiv(FT)=mDTF_S:=F'_Sh_1^m,F_T:=F'_Th_2^m \implies \\ \text{div}(F_S)=\text{div}(F'_S)+m\text{div}(h)=mD'_S+m\text{div}(h)=mD_S \\ \text{div}(F_T) = mD_T

First assume that supp(DS+DS)supp(DT+DT)=\text{supp}(D'_S + D_S) \cap \text{supp}(D'_T + D_T) = \empty then

FT(DS)FS(DT)=h2(DS)mFT(DS)h1(DT)mFS(DT)=h2(div(h1))mh2(DS)mFT(div(h1))FT(DS)h1(div(h2))mh1(DT)mFS(div(h2))FS(DT)\frac{F_T(D_S)}{F_S(D_T)}=\frac{h_2(D_S)^mF'_T(D_S)}{h_1(D_T)^mF'_S(D_T)}=\frac{h_2(\text{div}(h_1))^mh_2(D'_S)^mF'_T(\text{div}(h_1))F'_T(D'_S)}{h_1(\text{div}(h_2))^mh_1(D'_T)^mF'_S(\text{div}(h_2))F'_S(D'_T)}

By (4.3.4)(4.3.4):

h1(div(h2))=h2(div(h1))h2(DS)m=h2(mDS)=h2(div(FS))=FS(div(h2))h1(DT)m=FT(div(h1))h_1(\text{div}(h_2))=h_2(\text{div}(h_1)) \\ h_2(D'_S)^m=h_2(mD'_S)=h_2(\text{div}(F'_S))=F'_S(\text{div}(h_2)) \\ h_1(D'_T)^m=F'_T(\text{div}(h_1))

So we have:

em(S,T)=FT(DS)FS(DT)=FT(DS)FS(DT)e_m(S,T)=\frac{F_T(D_S)}{F_S(D_T)}=\frac{F'_T(D'_S)}{F'_S(D'_T)}

Finally if supp(DS+DS)supp(DT+DT)\text{supp}(D'_S + D_S) \cap \text{supp}(D'_T + D_T) \ne \empty then define:

DS=(X1+S)X1,DT=(Y1+T)(Y1)D''_S=(X_1+S)-X_1, D''_T=(Y_1+T)-(Y_1)

And choose X1EX_1 \in E and Y1EY_1 \in E such that supp(DS+DS)supp(DT+DT)=\text{supp}(D'_S + D''_S) \cap \text{supp}(D'_T + D''_T) = \empty and supp(DS+DS)supp(DT+DT)=\text{supp}(D''_S + D_S) \cap \text{supp}(D''_T + D_T) = \empty. Then by the argument above:

em(S,T)=FT(DS)FS(DT)=FT(DS)FS(DT)=FT(DS)FS(DT)e_m(S,T)=\frac{F_T(D_S)}{F_S(D_T)}=\frac{F'_T(D'_S)}{F'_S(D'_T)}=\frac{F''_T(D'_S)}{F''_S(D'_T)}

\square

Embedding degree

So now we know about E[r]E[r] in EE let's expore the behavior of rational points E[r]FqE[r]_{\mathbb F_q}. First thing to notice is that if rEFqr \nmid |E_{\mathbb F_q}| that we cannot have an element of order rr and so E[r]Fq=E[r]_{\mathbb F_q} = \empty. So we assume rEFqr \mid E_{\mathbb F_q} then by (2.2.34)(2.2.34) there's an element of order rr so we have at least one non-trivial subgroup of order rr that will correspond to (0,1)G\lang (0,1) \rang_G.

If we have just one element from another subgroup then from the subgroup structure above it's clear that will have all rr-torsion in EFqE_{\mathbb F_q} and thus all r+1r+1 subgroups.

Now note that if we start extending Fq\mathbb F_q to Fq2\mathbb F_{q^2}, Fq3\mathbb F_{q^3} and so on, eventually we'll arrive at F\overline F that has all torsion inside (embedded). So it's clear there's some number k:E[r]EFqk1,E[r]EFqkk: E[r] \nsubseteq E_{\mathbb F_{q^{k-1}}}, E[r] \subseteq E_{\mathbb F_{q^{k}}}. This number kk is called embedding degree of rr which we'll shortly after the following definition:

def: Group of r-th roots in a field

FqFμr:={xF:xr=1}\begin{align*} &\sphericalangle \\ &\mathbb F_q \in \mathcal F \\ \hline \\ &\mu_r:=\{x \in F: x^r=1\} \end{align*}

Recall that this group is cyclic that it has a generator called primitive r-th root of unity.

Proposition 4.3.6: Embedding degree

q=pn,pP(E,O)/FqErP,rEFq,rq1The following k are the same:k=arg minkE[r]EFqkk=arg minkμrFqkk=arg minkrqk1\begin{align*} &\sphericalangle \\ &q = p^n, p \in \mathfrak P \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &r \in \mathfrak P, r \mid |E_{\mathbb F_q}|, r \nmid q-1 \\ \hline \\ &\text{The following } k\text{ are the same:} \\ &\begin{align*} &k=\argmin_k E[r] \subseteq E_{\mathbb F_{q^k}} \hspace{0.5cm} \tag{a}\\ &k=\argmin_k \mu_r \subseteq \mathbb F_{q^k} \hspace{0.5cm} \tag{b}\\ &k=\argmin_k r \mid q^{k}-1 \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

(a)    (b)(a) \implies (b)

Assume er(E[r],E[r])=μdμre_r(E[r],E[r])=\mu_d \subseteq \mu_r. This implies that:

S,TE[r]:1=er(S,T)d=er([d]S,T)    (4.3.5.h)SE[r]:[d]S=O\forall S, T \in E[r]:1=e_r(S,T)^d=e_r([d]S,T) \overset{(4.3.5.h)}\implies \forall S \in E[r]: [d]S=O

So [d]1(O)=E[r]=r2|[d]^{-1}(O)|=|E[r]|=r^2 thus by (4.2.7)(4.2.7) we have d=rd=r.

Finally since E[r]EFqkE[r] \subseteq E_{\mathbb F_{q^k}} we have σGalF/FqkGalF/Fq,SEFqk:Sσ=S\forall \sigma \in \text{Gal}_{\overline F/\mathbb F_{q^k}} \subseteq \text{Gal}_{\overline F/\mathbb F_q}, \forall S \in E_{\mathbb F_{q^k}}: S^{\sigma}=S. Next xμm:P,QEFqk:x=e(P,Q)\forall x \in \mu_m: \exists P, Q \in E_{\mathbb F_{q^k}}: x=e(P,Q). Finally by (4.3.3.e)(4.3.3.e):

xσ=e(P,Q)σ=e(Pσ,Qσ)=e(P,Q)=xx^\sigma = e(P,Q)^{\sigma}=e(P^{\sigma}, Q^{\sigma})=e(P,Q)=x

So we have μrFqk\mu_r \subseteq \mathbb F_{q^k}

(b)    (c)(b) \implies (c)

μr\mu_r is a multiplicative subgroup of Fqk\mathbb F_{q^k} and μr=r|\mu_r|=r, Fqk=qk1|\mathbb F_{q^k}^*|=q^k-1

(c)    (a)(c) \implies (a)

Since rPr \in \mathfrak P by (2.2.34)(2.2.34) we know that PE[r]FqEFq\exists P \in E[r]_{\mathbb F_q} \subseteq E_{\mathbb F_q} of exact order rr. Now since E[r]Z/rZ×Z/rZE[r]\cong \Z/r\Z \times \Z/r\Z there's a basis {P,T}\{P,T\} for E[r]E[r].

Next if q=pnq=p^n define ϕ=ρn\phi = \rho^n - n-th power frobenius. Note that ϕGal(Fq/Fq)=ϕ,Gal(Fq/Fqk)=ϕk\phi \in \text{Gal}(\overline {\mathbb F}_q/\mathbb F_q) = \lang \phi \rang, \text{Gal}(\overline {\mathbb F}_q/\mathbb F_{q^k}) = \lang \phi^k \rang so:

Pϕ=P,Tϕ=[a]P+[b]T,a,bZ/rZP^{\phi}=P, T^{\phi}=[a]P+[b]T, a,b \in \Z/r\Z

(for the last it's easy to check that E[r]E[r] is Galois invariant).

As a next step consider the following:

er(P,T)q=er(P,T)ϕ=er(Pϕ,Tϕ)=er(P,[a]P+[b]T)=er(P,T)be_r(P,T)^q=e_r(P,T)^{\phi}=e_r(P^{\phi},T^{\phi})=e_r(P,[a]P+[b]T) = \\ e_r(P,T)^b

Note that from the proof of (a)(a) we know that since P,TP, T is a basis then pairing for any points from E[m]E[m] will be a power of er(P,T)e_r(P,T). Also note for these statements we consider everything in a field Fq\overline{\mathbb F}_q so we don't need any additinal assumptions from (a)(a). Long story short this means that:

q=b(modr)q = b \pmod r

So Tϕ=[a]P+[q]TT^{\phi}= [a]P+[q]T and we have:

Tϕk=[a(1+q++qk1)]P+[qk]TT^{\phi^k}=[a(1+q+\ldots+q^{k-1})]P+[q^k]T

But qk=1(modr)q^k=1\pmod r so [qk]T=T[q^k]T=T and since q10(modr)q-1 \ne 0 \pmod r so (1+q++qk1)=qk1q1=0(modr)(1+q+\ldots+q^{k-1})=\frac{q^k-1}{q-1}=0 \pmod r so Tϕk=T    TFqkT^{\phi^k}=T \implies T \in \mathbb F_{q^k}.

\square

def: Embedding degree

(E,O)/FqErP,rEFqdege(r):={1 if rq1Any condition of (4.3.6) otherwise\begin{align*} &\sphericalangle \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &r \in \mathfrak P, r \mid |E_{\mathbb F_q}| \\ \hline \\ &\text{deg}_e(r):=\begin{cases} 1 \text{ if } r \mid q-1 \\ \text{Any condition of } (4.3.6) \text{ otherwise} \end{cases} \end{align*}

Tate pairing

Tate pairing is based on the ideas of Weil pairing but advances it two ways: first its second argument is not restricted to E[r]E[r], second it's computed more efficiently since it only needs one fr,Qf_{r,Q} calculation unlike the Weil pairing.

We start with the defintion that is based on Weil pairing. Further we'll consider the following parameters:

q=pm,pPrPk:=dege(r) rEFq,r2EFqkρq:=ρmq = p^m, p \in \mathfrak P \\ r \in \mathfrak P \\ k:=\text{deg}_e(r)\ \\ r \mid |E_{\mathbb F_q}|, r^2 \nmid |E_{\mathbb F_{q^k}}| \\ \rho_q := \rho^m

def: Tate pairing

(E,O)/FqEPE[r]FqkQEFqkRE:[r]R=QModified Tate pairing:τr:E[r]Fqk×EFqk/[r]EFqkμr,P,Qer(P,RRρq)Tate pairing:.,.r:E[r]Fqk×EFqk/[r]EFqkFqk/(Fqk)r,P,Qτr(P,Q)r\begin{align*} &\sphericalangle \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &P \in E[r]_{\mathbb F_{q^k}} \\ &Q \in E_{\mathbb F_{q^k}} \\ &R \in E: [r]R=Q \\ \hline \\ &\text{Modified Tate pairing:} \\ &\tau_r: E[r]_{\mathbb F_{q^k}} \times E_{\mathbb F_{q^k}}/[r]E_{\mathbb F_{q^k}} \to \mu_r, \\ &P,Q \mapsto e_r(P,R-R^{\rho_q}) \\ &\text{Tate pairing:} \\ &\lang .\,,. \rang_r: E[r]_{\mathbb F_{q^k}} \times E_{\mathbb F_{q^k}}/[r]E_{\mathbb F_{q^k}} \to \mathbb F_{q^k}^*/\mathbb (F_{q^k}^*)^r, \\ &P,Q \mapsto \sqrt[r]{\tau_r(P,Q)} \end{align*}
note

Instead of a point QQ we should rather consider a coset Q+[r]EFqkQ+[r]E_{\mathbb F_{q^k}} but we'll stick to individual points for simplicity.

Here where we'd like to have a property r2EFqkr^2 \nmid |E_{\mathbb F_{q^k}}| so that if we pick points from a subgroup of EFqk|E_{\mathbb F_{q^k}}| we end up having different points in EFqk/[r]EFqkE_{\mathbb F_{q^k}}/[r]E_{\mathbb F_{q^k}}. It's easy to check it strictly so let's do an example instead.

Assume EZ/12ZE\cong \Z/12\Z and consider r=3,r212r=3, r^2 \nmid 12. Then E[3]={0,4,8}E[3]=\{0,4,8\}, in E/[3]E=Z/3ZE/[3]E=\Z/3\Z it will be {0,1,2}=Z/3Z\{0,1,2\}=\Z/3\Z.

On the other hand if r=2,r212r=2, r^2 \mid 12 then E[2]={0,6}E[2]=\{0,6\} and it is {0}\{0\} in Z/2Z\Z/2\Z.

note

Previously we discussed that [r][r] is surjective but why then [r]EFqkEFqk[r]E_{\mathbb F_{q^k}} \ne E_{\mathbb F_{q^k}}? The thing is that [r][r] is surjective for EE over Fqk\overline {\mathbb F}_{q^k}.

Proposition 4.3.7: Tate pairing properties

(E,O)/FqEPiE[r]FqkQiEFqk/rEFqkTate pairing is well-definedτr(P1+P2,Q)=τr(P1,Q)+τr(P2,Q)τr(P,Q1+Q2)=τr(P,Q1)+τr(P,Q2)(PE[r]:em(P,Q)=1)    Q=O\begin{align*} &\sphericalangle \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &P_i \in E[r]_{\mathbb F_{q^k}} \\ &Q_i \in E_{\mathbb F_{q^k}}/rE_{\mathbb F_{q^k}} \\ \hline \\ &\begin{align*} &\text{Tate pairing is well-defined} \hspace{0.5cm} \tag{a}\\ &\tau_r(P_1+P_2, Q)=\tau_r(P_1, Q)+\tau_r(P_2, Q)\hspace{0.5cm} \tag{b} \\ &\tau_r(P, Q_1+Q_2)=\tau_r(P, Q_1)+\tau_r(P, Q_2)\hspace{0.5cm} \tag{c} \\ & (\forall P \in E[r]: e_m(P,Q)=1) \implies Q = O\hspace{0.5cm} \tag{d}\\ \end{align*} \end{align*}

Proof

a.

First we need to make sure that Weil pairing is defined and the definition is independent on the choice of RR:

O=QQρq=[r](RRρq)    RRρqE[r]O = Q - Q^{\rho_q}=[r](R-R^{\rho_q}) \implies R-R^{\rho_q} \in E[r]

So Weil parinig is well-defined. Now consider R:[r]R=QR':[r]R'=Q and define T:=RRT:=R'-R. Then [r]T=O    TE[r][r]T=O \implies T \in E[r] so:

er(P,RRρq)=er(P,RRρq+TTρq)=er(P,RRρq)er(P,T)er(P,Tρq)e_r(P, R'-R'^{\rho_q})=e_r(P, R-R^{\rho_q}+T-T^{\rho_q})= \\ e_r(P, R-R^{\rho_q})\frac{e_r(P, T)}{e_r(P, T^{\rho_q})}

Considering that P=PρqP=P^{\rho_q} we have:

er(P,Tρq)=er(Pρq,Tρq)=er(P,T)ρq=er(P,T)    er(P,RRρq)=er(P,RRρq)e_r(P, T^{\rho_q})=e_r(P^{\rho_q}, T^{\rho_q})=e_r(P, T)^{\rho_q}=e_r(P, T) \implies \\ e_r(P, R'-R'^{\rho_q})=e_r(P, R-R^{\rho_q})

So we proved that the value is independent of the choice of RR. The last thing we need to show is that if QQ=[r]UE[r]FqkQ'-Q=[r]U\in E[r]_{\mathbb F_{q^k}} then we have the same value. Consider some R:[r]R=QR: [r]R=Q then R:=R+U    Q=[r]RR':=R+U \implies Q'=[r]R' so

τr(P,Q)=er(P,RRρq)=er(P,RRρq+UUρq)=er(P,RRρq)=τr(P,Q)\tau_r(P, Q')=e_r(P, R'-R'^{\rho_q})=e_r(P, R-R^{\rho_q}+U-U^{\rho_q})= \\ e_r(P, R-R^{\rho_q})=\tau_r(P,Q)

b.

Obvious

c.

Consider [r]R1=Q1[r]R_1=Q_1, [r]R2=Q2[r]R_2=Q_2:

τr(P,Q1+Q2)=er(P,R1R1ρq+R2R2ρq)=er(P,R1R1ρq)er(P,R2R2ρq)=τr(P,Q1)τr(P,Q2)\tau_r(P, Q_1+Q_2)=e_r(P, R_1-R_1^{\rho_q}+R_2-R_2^{\rho_q})= \\ e_r(P, R_1-R_1^{\rho_q})e_r(P, R_2-R_2^{\rho_q})=\tau_r(P, Q_1)\tau_r(P, Q_2)

d.

We will not prove it here

\square

Now as in the Weil pairing we'd like to give an alternative definition that is more suitable for calculations and prove the equivalence. But first let's prove some proposition that will make sure that we have enough flexibility in choosing different divisors.

Proposition 4.3.8: Equivalent invariant divisors existence

(E,O)/FqED1:D1ρq=D1SE,S<D:Dρq=D,DD1,supp(D1)supp(D)=\begin{align*} &\sphericalangle \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &D_1: D_1^{\rho_q}=D_1 \\ & S \subseteq E, |S| < \infty \\ \hline \\ &\exists D: D^{\rho_q}=D, D \sim D_1, \text{supp}(D_1) \cap \text{supp}(D)= \empty \end{align*}

Proof

Assume D=cj(Pj)D=\sum c_j(P_j). Since there's an power xx of qq such that PjEFqxP_j \in E_{\mathbb F_{q^x}} and this group is finite, we know that M:j:[M]Pj=O\exists M: \forall j: [M]P_j=O. Take some m=1(modM)m=1 \pmod M and take some TEFqmT \in E_{\mathbb F_{q^m}}. Then Tρqm=TT^{\rho_q^m}=T so ρq\rho_q permutes {1,Tρq,,Tρqm1}\{1, T^{\rho_q}, \ldots, T^{\rho_q^{m-1}}\}. Now define

D:=i=0m1j=1dcj((Pj+Tρqi)(Tρqi))D:=\sum_{i=0}^{m-1} \sum_{j=1}^dc_j((P_j+T^{\rho^i_q})-(T^{\rho^i_q}))

Note that since D1ρq=D1D_1^{\rho_q}=D_1 we have cjρq=cj,Pjρq=Pjc_j^{\rho_q}=c_{j'}, P_j^{\rho_q}=P_{j'} but for each cjc_j there's a whole set of {1,Tρq,,Tρqm1}\{1, T^{\rho_q}, \ldots, T^{\rho_q^{m-1}}\} that is permuted to itself, so Dρq=DD^{\rho_q}=D.

Next, sice m=1(modM)m=1 \pmod M and [M]Pj=0[M]P_j=0:

sum(i=0m1(Pj+Tρqi)(Tρqi))=mPj=Pj\text{sum}(\sum_{i=0}^{m-1} (P_j+T^{\rho^i_q})-(T^{\rho^i_q}))=mP_j=P_j

So sum(D1D)=0,deg(D1D)=0\text{sum}(D_1-D)=0, \deg(D_1-D)=0 which implies D1DD_1 \sim D.

Finally note that if DD contains some point in SS then either TρqiT^{\rho^i_q} or Pj+TρqiP_j+T^{\rho^i_q} for some i,jSi,j \in S. This happens if T is in i(ρqi)1(S)i,j(ρqi)1(SPj)\bigcup_{i}(\rho^i_q)^{-1}(S) \cup \bigcup_{i,j}(\rho^i_q)^{-1}(S-P_j) which has at most m(d+1)sm(d+1)s elements (where s:=Ss:=|S| is a finite consant). But notice that by (4.2.11)(4.2.11) we have EFqmqm12qm/2|E_{\mathbb F_q^m}|\ge q^m-1-2q^{m/2} so by increasing mm we see that the group is growing exponentially faster than the prohibited values for TT. So by increasing mm we can pick the correct TT (remember that TT was arbitrary).

\square

Proposition 4.3.9: Invariant functions existence

(E,O)/FqEDDiv0(E)sum(D)=0D=Dρqf:div(f)=D,fρq=f\begin{align*} &\sphericalangle \\ &(E, O)/\mathbb F_q \in \mathcal E \\ &D \in \text{Div}^0(E) \\ &\text{sum}(D)=0\\ &D=D^{\rho_q} \\ \hline \\ &\exists f: \text{div}(f)=D, f^{\rho_q}=f \end{align*}

Proof

Take some f1:div(f1)=Df_1: \text{div}(f_1)=D. Then:

div(f1ρq)=Dρq=D=div(f1)    f1ρk/f1=cFq\text{div}(f_1^{\rho_q})=D^{\rho_q}=D=\text{div}(f_1) \implies \\ f_1^{\rho_k}/f_1 = c \in \overline{\mathbb F}_q^*

Now take some d:c=dq1=dρq/dd: c=d^{q-1}=d^{\rho_q}/d. Then

(f1/d)ρq=f1ρq/dρq=cf1/dρq=f1/d(f_1/d)^{\rho_q}=f_1^{\rho_q}/d^{\rho_q}=cf_1/d^{\rho_q}=f_1/d

\square

Now that we know we're very flexible in terms of picking a good divisor, let's formulate the alternative definition.

def: Alternative definition of Tate pairing

PE[r]Fqk,QEFqkDP,DQDiv0(E)DP/Fqk,DQ/Fqk that is DP=DPρq,DQ=DQρqsum(DP)=P,sum(DQ)=Qsupp(DP)supp(DQ)=suppDPsuppDQ=P,Qra:=fr,P(DQ)τna(P,Q)=fr,P(DQ)(qk1)/r\begin{align*} &\sphericalangle \\ &P \in E[r]_{\mathbb F_{q^k}}, \\ &Q \in E_{\mathbb F_{q^k}} \\ &D_P, D_Q \in \text{Div}^0(E) \\ &D_P/{\mathbb F}_{q^k}, D_Q/{\mathbb F}_{q^k} \text{ that is } D_P=D_P^{\rho_q},D_Q=D_Q^{\rho_q} \\ &\text{sum}(D_P)=P,\text{sum}(D_Q)=Q \\ &\text{supp}(D_P) \cap \text{supp}(D_Q) = \empty \\ &\text{supp}D_P \cap \text{supp}D_Q = \empty \\ \hline \\ &\lang P,Q \rang^a_r:= f_{r,P}(D_Q) \\ &\tau^a_n(P,Q)=f_{r,P}(D_Q)^{(q^k-1)/r} \end{align*}

Proposition 4.3.20: Alternative definition of Tate pairing

τna(P,Q)=τn(P,Q) \tau^a_n(P,Q)=\tau_n(P,Q)

Proof

For this proof we'll assume that q:=qkq:=q^k where kk is embedding degree.

Take some point R:[r]R=QR:[r]R = Q and function gg:

div(g)=r(R)(Q)(n1)(O)\text{div}(g)=r(R)-(Q)-(n-1)(O)

Then

div(gρq)=r(Rρq)(Q)(n1)(O)    div(g/gρq)=r(R)r(Rρq)\text{div}(g^{\rho_q})=r(R^{\rho_q})-(Q)-(n-1)(O) \implies \\ \text{div}(g/g^{\rho_q})=r(R)-r(R^{\rho_q})

By (4.3.8)(4.3.8) if we assume D1=(P)(O)D_1=(P)-(O) we can pick DPD_P such that it's disjoint from Q,R,OQ, R, O and sum(DP)=P\text{sum}(D_P)=P (remeber that equivalent divisors have the same sum).

Take some f:div(f)=rDP,fρq=ff: \text{div}(f)=rD_P, f^{\rho_q}=f (we can do it by (4.3.9)(4.3.9)). Now we use (4.3.5)(4.3.5) with S=P,T=RRρq,DS=DP,DT=(R)(Rρq),FS=f,FT=g/gρqS=P, T=R-R^{\rho_q}, D_S=D_P, D_T=(R)-(R^{\rho_q}), F_S=f, F_T=g/g^{\rho_q} then:

τr(P,Q)=er(P,RRρq)=(g/gρq)(DP)f((R)(Rρq))=g(DP)gρq(DP)1f((R)(Rρq))=g(DP)gρq(DP)f(Rρq)f(R)=g(DP)gρq(DPρq)fρq(Rρq)f(R)=g(DP)f(R)(f(R)g(DP))ρq=g(DP)f(R)(f(R)g(DP))q=(f(R)g(DP))q1\tau_r(P,Q)=e_r(P, R-R^{\rho_q})=\frac{(g/g^{\rho_q})(D_P)}{f((R)-(R^{\rho_q}))}= \\ \frac{g(D_P)}{g^{\rho_q}(D_P)}\frac{1}{f((R)-(R^{\rho_q}))}=\frac{g(D_P)}{g^{\rho_q}(D_P)}\frac{f(R^{\rho_q})}{f(R)} =\\ \frac{g(D_P)}{g^{\rho_q}(D_P^{\rho_q})}\frac{f^{\rho_q}(R^{\rho_q})}{f(R)}=\frac{g(D_P)}{f(R)} (\frac{f(R)}{g(D_P)})^{\rho_q}= \\ \frac{g(D_P)}{f(R)} (\frac{f(R)}{g(D_P)})^{q}=(\frac{f(R)}{g(D_P)})^{q-1}

Then note that:

f(R)rf(Q)f(O)f(O)r=f(div(g))=g(div(f))=g(DP)r    (f(R)g(DP))r=f(Q)f(O)f(O)r    raise to (q1)/rτr(P,Q)=(f(Q)f(O))(q1)/rf(O)q1\frac{f(R)^r}{f(Q)}\frac{f(O)}{f(O)^r}=f(\text{div}(g))=g(\text{div}(f))=g(D_P)^r \implies \\ (\frac{f(R)}{g(D_P)})^{r}=\frac{f(Q)}{f(O)}f(O)^{r} \overset{\text{raise to } (q-1)/r}\implies \\ \tau_r(P,Q) = (\frac{f(Q)}{f(O)})^{(q-1)/r}f(O)^{q-1}

We know that f=fρqf=f^{\rho_q} and O=OρqO=O^{\rho_q} so f(O)ρq=f(O)    f(O)Fqf(O)^{\rho_q}=f(O) \implies f(O) \in \mathbb F_q. Since DPD_P is disjoint from OO it follows that f(O)Fqf(O) \in \mathbb F_q^* and so f(O)q1=1f(O)^{q-1}=1.

Now define divisor DQ:=(Q)(O)D_Q:=(Q)-(O) it will have a disjoint support with DPD_P by definition of DPD_P and it follows:

τr(P,Q)=f(DQ)(q1)/r=τra(P,Q)\tau_r(P,Q) = f(D_Q)^{(q-1)/r}=\tau^a_r(P,Q)

\square

Miller algorithm

We see that in Tate pairing the only non-trivial thing to calculate is the function ff with divisor r(P)r(O),PE[r]r(P)-r(O), P \in E[r], . We'll define a Miller function:

divfr,P=r(P)([r]P)(r1)(O)\text{div}f_{r,P}=r(P)-([r]P)-(r-1)(O)

Note that this function has a divisor r(P)r(O)r(P)-r(O) if PE[r]P \in E[r] but it's defined for other points of the curve as well.

Recall that the line through P,QP, Q and the tangent line through point [r]P[r]P has a divisor:

l[r]P,P=([r]P)+(P)+([r+1]P)3(O)l[r]P,[r]P=2([r]P)+([2r]P)3(O)l_{[r]P,P}=([r]P)+(P) + (-[r+1]P)-3(O) \\ l_{[r]P,[r]P}=2([r]P)+(-[2r]P)-3(O)

And vertical line passing though [r]P[r]P has a divisor:

v[r]P=([r]P)+([r]P)2(O)v_{[r]P}=([r]P)+(-[r]P)-2(O)

So:

div(l[r]P,P/v[r+1]P)=([r]P)+(P)([r+1]P)(O)div(l[r]P,[r]P/v[2r]P)=2([r]P)([2r]P)(O)\text{div}(l_{[r]P,P}/v_{[r+1]P})=([r]P)+(P)-([r+1]P)-(O)\\ \text{div}(l_{[r]P,[r]P}/v_{[2r]P})=2([r]P)-([2r]P)-(O)

And

divf2r,P=2r(P)([2r]P)(2r1)(O)=(2r(P)2([r]P)2(r1)(O))+2([r]P)([2r]P)(O)=div(fr,P2)div+(l[r]P,[r]P/v[2r]P)    f2r,P(x)=fr,P2(x)l[r]P,[r]P(x)/v[2r]P(x)\text{div}{f_{2r,P}}=2r(P)-([2r]P)-(2r-1)(O) = \\ (2r(P)-2([r]P)-2(r-1)(O))+2([r]P)-([2r]P)-(O)=\\ \text{div}(f^2_{r,P})\text{div}+(l_{[r]P,[r]P}/v_{[2r]P}) \implies \\ {f_{2r,P}}(x)=f^2_{r,P}(x)l_{[r]P,[r]P}(x)/v_{[2r]P}(x)

On the other hand for points PP and QQ:

divfr+1,P=(r+1)(P)([r+1]P)r(O)=([r]P([r])P(r1)O+(P))+([r]P)([r+1]P)(O)=divfr,P+div(l[r]P,P/v[r+1]P)    fr+1,P(x)=fr,P(x)l[r]P,P(x)/v[r+1]P(x)\text{div}{f_{r+1,P}}=(r+1)(P)-([r+1]P)-r(O)=\\ ([r]P-([r])P-(r-1)O +(P)) +([r]P)-([r+1]P) -(O)= \\ \text{div}f_{r,P}+\text{div}(l_{[r]P,P}/v_{[r+1]P}) \implies \\ f_{r+1,P}(x)=f_{r,P}(x)l_{[r]P,P}(x)/v_{[r+1]P}(x)

So we can use this fact to employ double and add algorithm for quickly finding fr,P(DQ)f_{r,P}(D_Q):

f1,P(DQ)=1fr+1,P(DQ)=fr,P(DQ)l[r]P,P(DQ)/v[r+1]P(DQ)f2r,P(DQ)=fr,P2(DQ)l[r]P,[r]P(DQ)/v[2r]P(DQ)f_{1,P}(D_Q)=1 \\ f_{r+1,P}(D_Q)=f_{r,P}(D_Q)l_{[r]P,P}(D_Q)/v_{[r+1]P}(D_Q)\\ {f_{2r,P}}(D_Q)=f^2_{r,P}(D_Q)l_{[r]P,[r]P}(D_Q)/v_{[2r]P}(D_Q)

Ate pairing

Ate pairing is an optimization of Tate pairing aiming to reduce the Miller loop length.

First note that the divosor of fa,Of_{a,O} is 0 and hence this function equals 1.

Next, we have the following equation for Miller function:

div(fab,Q)=ab(Q)([ab]Q)(ab1)(O)div(fa,Qb)=ab(Q)b([a]Q)(abb)(O)div(fb,[a]Q)=b([a]Q)([ab]Q)(b1)(O)    div(fab,Q)=div(fa,Qb)+div(fb,[a]Q)    fab,Q(P)=fa,Qb(P)fb,[a]Q(P)\text{div}(f_{ab, Q})=ab(Q)-([ab]Q)-(ab-1)(O) \\ \text{div}(f_{a,Q}^b)=ab(Q)-b([a]Q)-(ab-b)(O) \\ \text{div}(f_{b,[a]Q})=b([a]Q)-([ab]Q)-(b-1)(O) \implies \\ \text{div}(f_{ab, Q})= \text{div}(f_{a,Q}^b)+\text{div}(f_{b,[a]Q}) \implies \\ f_{ab, Q}(P)=f_{a,Q}^b(P)\cdot f_{b,[a]Q}(P)

Let's take some λ=q(modr)\lambda = q \pmod r then since qk1=0(modr)q^k-1 = 0 \pmod r we have λk1=0(modr)\lambda^k-1 = 0 \pmod r. So we can define m:=(λk1)/rm:=(\lambda^k-1)/r and:

fλk,Q(P)=fλk1,Q(P)l[λk1]Q,Q(P)/v[λk]Q(P)=fλk1,Q(P)lO,Q(P)/vQ(P)=fλk1,Q(P)=fmr,Q(P)f_{\lambda^k, Q}(P)=f_{\lambda^k-1, Q}(P)l_{[\lambda^k-1]Q,Q}(P)/v_{[\lambda^k]Q}(P)= \\ f_{\lambda^k-1, Q}(P)l_{O,Q}(P)/v_{Q}(P)=f_{\lambda^k-1, Q}(P)=\\ f_{mr, Q}(P)

Let's raise both sides to (qk1)/r:(q^k-1)/r:

fλk,Q(P)(qk1)/r=fmr,Q(P)(qk1)/r=fr,Q(P)m(qk1)/rfm,[r]Q(P)=fr,Q(P)m(qk1)/rfm,O(P)=fr,Q(P)m(qk1)/r=τr(Q,P)mf_{\lambda^k, Q}(P)^{(q^k-1)/r}=f_{mr, Q}(P)^{(q^k-1)/r} = \\ f_{r, Q}(P)^{m(q^k-1)/r}f_{m, [r]Q}(P)=f_{r, Q}(P)^{m(q^k-1)/r}f_{m, O}(P)= \\ f_{r, Q}(P)^{m(q^k-1)/r}=\tau_r(Q,P)^m

Now assuming a=λ,b=λk1a=\lambda, b = \lambda^{k-1}, recursively applying the equation above (fab,Q(P)=fa,Qb(P)fb,[a]Q(P)f_{ab, Q}(P)=f_{a,Q}^b(P)\cdot f_{b,[a]Q}(P)) and taking into account that [λi]Q=[qi]Q[\lambda^i]Q=[q^i]Q:

fλk,Q(P)=fλ,Qλk1(P)fλ,[q]Qλk2(P)fλ,[qk1]Qλ(P)f_{\lambda^k,Q}(P)=f_{\lambda,Q}^{\lambda^{k-1}}(P)\cdot f_{\lambda,[q]Q}^{\lambda^{k-2}}(P)\cdot \ldots \cdot f_{\lambda,[q^{k-1}]Q}^{\lambda}(P)

Next we want to take QG2Q \in \mathbb G_2 - the trace-kernel subgroup and PG1P \in \mathbb G_1 from trace-image subgroup. In this case:

fλk,Q(P)q=ϕ(fλk,Q(P))=fλk,ϕ(Q)(ϕ(P))=fλk,[q]Q(P)f_{\lambda^k,Q}(P)^q=\phi(f_{\lambda^k,Q}(P))= \\ f_{\lambda^k,\phi(Q)}(\phi(P))=f_{\lambda^k,[q]Q}(P)

So we have:

fλk,Q(P)=fλ,Q(P)i=0k1λk1iqif_{\lambda^k,Q}(P)=f_{\lambda,Q}(P)^{\sum_{i=0}^{k-1}\lambda^{k-1-i}q^i}

And:

τr(Q,P)m=(fλ,Q(P)(qk1)/r)i=0k1λk1iqi\tau_r(Q,P)^m=(f_{\lambda,Q}(P)^{(q^k-1)/r})^{\sum_{i=0}^{k-1}\lambda^{k-1-i}q^i}

So if rmr \nmid m we can define an Ate pairing with the same properties as in Tate pairing:

αλ:G1×G2μr,(P,Q)fλ,P(DQ)(qk1)/r\alpha_{\lambda}: \mathbb G_1 \times \mathbb G_2 \to \mu_r, (P,Q) \mapsto f_{\lambda, P}(D_Q)^{(q^k-1)/r}

where λ=q(modr)\lambda=q \pmod r. This gives a shorter cycle for Miller loop than in Tate's case where you need logr\log r iterations (here you need logλ\log \lambda).

Twists

One final optimization that is frequently used is the so-called twists. This is essentially isomorphic curves for a given elliptic curve. Why do we need that? In general the higher the degree of the field the harder it's to make arithmetic calculations inside of it. For example Fq12\mathbb F_{q^{12}} is much more computation intensive than Fq\mathbb F_q. So if isomorphic curve has points a lower field that's something that we'd like to have.

Consider an equation

E:y2=x3+Ax+B,A,BFq E: y^2=x^3+Ax+B, A, B \in \mathbb F_{q}

and an isomorphism of the form:

(x,y)(x/u2,y/u3),uFqk,vFqk:v2=u (x,y) \mapsto (x/u^2,y/u^3), u \in \mathbb F_{q^k}, \nexists v \in \mathbb F_{q^k}: v^2=u

Then the isomorphic equation will become:

E:y2=x3+Au4x+u6BE': y^2=x^3+Au^4x+u^6B

Now note that there are several cases for values of u,Au, A and BB:

  • A=0,u6Fqk/6A=0, u^6 \in \mathbb F_{q^{k/6}}, in this case E/Fqk/6E' / {\mathbb F}_{q^{k/6}} and we say d=6d=6 or we have sextic twist

  • A=0,u6Fqk/3A=0, u^6 \in \mathbb F_{q^{k/3}}, in this case E/Fqk/3E' / {\mathbb F}_{q^{k/3}} and we say d=3d=3 or we have cubic twist

  • B=0,u4Fqk/4B=0, u^4 \in \mathbb F_{q^{k/4}} in this case E/Fqk/4E' / {\mathbb F}_{q^{k/4}} and we say d=4d=4 or we have quartic twist

  • u2Fqk/2u^2 \in \mathbb F_{q^{k/2}} in this case E/Fqk/2E' / {\mathbb F}_{q^{k/2}} and we say d=2d=2 or we have quadratic twist