Skip to main content

4.2 Elliptic curve groups

Geometric group law

We want to define a group made of the points of elliptic curve. We will make two definitions - one is geometrical and the other is algebraic. We'll start with geometric.

Consider an elliptic curve in Weierstass form E/FE/F and recall that is has a point O=[0,1,0]O=[0,1,0].

First we will define the neutral element of the elliptic curve group to be OO.

Next if we have a point P=(x0,y0)EFP=(x_0,y_0) \in E_F then we define the inverse P:=(x0,y0)EF-P:=(x_0,-y_0)\in E_F. Thus P+(P)=OP+(-P)=O.

Finally if we have two points P=(xp,yp),Q=(xq,yq)EFP=(x_p,y_p), Q = (x_q,y_q) \in E_F and draw a line through this points (or tangent line if P=QP=Q, remember we can always do it since the curve is smooth). If the line of the equation is l:=ax+by+cl:=ax+by+c and since axp+byp+c=0ax_p+by_p+c=0 and axq+byq+c=0ax_q+by_q+c=0 we know that lF[x,y]l \in F[x,y]. So for other points of intersection we'll have the system of equations:

{ax+by+c=0y2=x3+Ax+B\begin{cases} ax+by+c=0 \\ y^2=x^3+Ax+B \end{cases}

This set of equations have at least two roots PP and QQ so since we have an equation of degree 3 it will have a 3rd point that we'll assign (P+Q)-(P+Q) in a group. Note that if b0b \ne 0 then we'll have an equation in F[x,y]F[x,y] (that is with coefficents from FF, not F\overline F). Then xp+xq+x(p+q)x_p+x_q+x_{-(p+q)} will be the coefficent of polynomal at xx which is in FF. So xp+xq+x(p+q)F,xpF,xqF    x(p+q)Fx_p+x_q+x_{-(p+q)} \in F, x_p \in F, x_q \in F \implies x_{-(p+q)} \in F. From ax+by+c=0ax+by+c=0 we also imply that y(p+q)Fy_{-(p+q)} \in F.

Thus we have the following three cases for adding points on elliptic curve:

  1. PQP \ne Q

Elliptic curve cross

Elliptic curve cross

  1. P=QP = Q

Elliptic curve tangent

Elliptic curve tangent

  1. P=QP = -Q

Elliptic curve vertical

Elliptic curve vertical

Let's summarize the geometric group law. Consider a curve

y2+a1xy+a3y=x3+a2x2+a4x+a6y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6 \\

If P0:=(x0,y0)P_0:=(x_0,y_0) then P0=(x0,y0a1x0a3)-P_0=(x_0,-y_0-a_1x_0-a_3)

Now consider points P1+P2=P3,Pi:=(xi,yi)P_1+P_2=P_3, P_i:=(x_i,y_i).

Case 1.

If x1=x2,y1+y2+a1x2+a3=0x_1=x_2, y_1+y_2+a_1x_2+a_3=0 then P3=0P_3=0

Case 2.

We consider a line y=ax+by=ax+b:

{a=y2y1x2x1,b=y1x2y2x1x2x1 if x1x2a=3x12+2a2x1+a4a1y12y1+a1x1+a3,b=x13+a4x1+2a6a3y12y1+a1x1+a3\begin{cases} a=\frac{y_2-y_1}{x_2-x_1}, b=\frac{y_1x_2-y_2x_1}{x_2-x_1} \text{ if } x_1 \ne x_2\\ a=\frac{3x_1^2+2a_2x_1+a_4-a_1y_1}{2y_1+a_1x_1+a_3}, b=\frac{-x_1^3+a_4x_1+2a_6-a_3y_1}{2y_1+a_1x_1+a_3} \end{cases}

Then we have:

x3=a2+a1aa2x1x2y3=(a+a1)x3ba3x_3 = a^2+a_1a-a_2-x_1-x_2 \\ y_3 = -(a+a_1)x_3 - b - a_3 \\

Algebraic group law

As part of geometry - algebra duality that we saw several times earlier we want to define an algebraic group on elliptic curve and prove that it's isomorphic to the geometric group. This group will be a factor group

Pic0(E):=Div0(E)/Div(E)\text{Pic}^0(E):=\text{Div}^0(E)/\text{Div}_{\lang \rang}(E)

Next we're gonna make several propositions to prove that this group is isomorphic to the geometric group.

Proposition 4.2.1: Equivalent divisors on elliptic curve

(E,O)E(P)(Q)    P=Q\begin{align*} &\sphericalangle \\ &(E,O) \in \mathcal E \\ \hline \\ &(P) \sim (Q) \iff P=Q \end{align*}

Proof

    \implies

(P)(Q)    fF(E):div(f)=(P)(Q)(P) \sim (Q) \implies \exists f \in F(E): \text{div}(f)=(P)-(Q)

Next (P)>0    div(f)+(Q)>0    fL((Q))(P)>0 \implies \text{div}(f) + (Q) >0 \implies f \in L((Q)). But by (3.4.14.c)(3.4.14.c) we have

dimL((Q))=1\dim L((Q))=1

So fF    (P)(Q)=0    (P)=(Q)    P=Qf \in \overline F \implies (P)-(Q)=0 \implies (P)=(Q) \implies P = Q.

    \impliedby

Obvious

\square

Proposition 4.2.2: Divisor-to-point map

(E,O)EDDiv0(E)!PE:D(P)(O)\begin{align*} &\sphericalangle \\ &(E,O) \in \mathcal E \\ &D \in \text{Div}^0(E) \\ \hline \\ &\exists! P \in E: D \sim (P)-(O) \end{align*}

Proof

Existence

Consider a divisor DO:=D+(O)D_O:=D+(O), it has degDO=degD+degO=1>2g2\deg D_O=\deg D+\deg O=1 > 2g-2 so by (3.4.14.c)(3.4.14.c) we have:

dimL(D+(O))=1\dim L(D+(O))=1

Consider some non zero fL(D+(O))f \in L(D+(O)). By definition of LL and (3.4.11)(3.4.11) we know that:

div(f)D(O),deg(div(f))=0\text{div}(f) \ge -D-(O), \deg(\text{div}(f))=0

Since D(O)-D-(O) gives a lower bound, we cannot have more poles than that. And this lower bound degee is 1-1 so there's exactly one point we can add to make deg(div(f))=0\deg(\text{div}(f))=0. So

div(f)=D(O)+(P)\text{div}(f) = -D-(O)+(P)

for some points PEP \in E. Hence

D(P)(O)D \sim (P)-(O)

Uniqueness

Consider D(P)(O)D \sim (P')-(O), in this case:

(P)(D)+(O)(P)(P')\sim (D)+(O) \sim (P)

So by (4.2.1):P=P(4.2.1): P'=P

\square

Note that [D][D]_\sim is an element of Pic0(E)\text{Pic}^0(E) and (4.2.2)(4.2.2) tells us that each such class of equivalence has a unique corresponding point in EE. That means we can define a map:

ε:Pic0(E)E\varepsilon: \text{Pic}^0(E) \to E

Then

ε1:EPic0(E),P(P)(O)+Div(E)\varepsilon^{-1}:E \to \text{Pic}^0(E), P \to (P)-(O)+\text{Div}_{\lang \rang}(E)

Proposition 4.2.3: Algebraic-geometric group isomopshism

(E,O)Eε:Pic0(E)EP,QE:ε1(P+Q):=ε1(P)+ε1(Q)ε:Pic0(E)GE\begin{align*} &\sphericalangle \\ &(E,O) \in \mathcal E \\ \hline \\ &\begin{align*} &\varepsilon: \text{Pic}^0(E) \leftrightarrow E \hspace{0.5cm} \tag{a}\\ &\forall P, Q \in E: \varepsilon^{-1}(P+Q): = \varepsilon^{-1}(P)+\varepsilon^{-1}(Q) \hspace{0.5cm} \tag{b}\\ &\varepsilon: \text{Pic}^0(E) \cong_G E \hspace{0.5cm} \tag{c}\\ \end{align*} \end{align*}

Proof

a.

First note that ε\varepsilon is surjective because ε((P)(O)+Div(E))=P\varepsilon((P)-(O)+\text{Div}_{\lang \rang}(E))=P.

Consider D1+Div(E),D2+Div(E):ε(D1+Div(E))=ε(D2+Div(E))=PD_1 + \text{Div}_{\lang \rang}(E), D_2 + \text{Div}_{\lang \rang}(E): \varepsilon(D_1 + \text{Div}_{\lang \rang}(E))=\varepsilon(D_2 + \text{Div}_{\lang \rang}(E)) = P. It means that D1(P)(O)D2 D_1 \sim (P)-(O) \sim D_2 so D1+Div(E)=D2+Div(E)D_1 + \text{Div}_{\lang \rang}(E)=D_2 + \text{Div}_{\lang \rang}(E)

Thus we proved Pic0(E)E\text{Pic}^0(E) \leftrightarrow E, in particular ε1\varepsilon^{-1} is well-defined.

b.

Consider a projective line in P2\mathbb P^2 that goes through PP and QQ:

l:ax+by+cz=0,b0l:ax+by+cz=0, b \ne 0 \\

Denote RR the third point of intersection. If point P:=[x0,y0,1]P:=[x_0, y_0, 1] then we have z(ax0+bx0+c)=0z(ax_0+bx_0+c)=0 so we can equivalently write the line equation as

l:a(xx0z)+b(yy0z)=0l: a(x-x_0z)+b(y-y_0z)=0

and we know from examples befor that mP=yy0zzI\mathfrak m_P=\lang \frac{y-y_0z}{z} \rang_I . Then

ordP(l/z)=ordP(a(xx0z)/z+b(yy0z)/z)=ordP(b(yy0)z)+ordP(1+axx0yy0)=1\text{ord}_P(l/z)=\text{ord}_P(a(x-x_0z)/z+b(y-y_0z)/z)= \\ \text{ord}_P(\frac{b(y-y_0)}{z})+\text{ord}_P(1+a\frac{x-x_0}{y-y_0})=1

(note that like we saw in examples earlier that ordP(xx0)=2,ordP(yy0)=1\text{ord}_P(x-x_0)=2, \text{ord}_P(y-y_0)=1)

The same will work for QQ and RR.

Now the pole of l/zl/z (again refer to examples before):

ordO(ax+by+czz)=ordO(ax+by+czy)+ordO(y/z)=3\text{ord}_{O}(\frac{ax+by+cz}{z})=\text{ord}_{O}(\frac{ax+by+cz}{y})+\text{ord}_{O}(y/z)=-3

So we have:

div(l/z)=(P)+(Q)+(R)3(O)\text{div}(l/z)=(P)+(Q)+(R)-3(O)

Now for the line ll' passing trough P+QP+Q and RR:

l:ax+cz=0l':a'x+c'z=0

Similar to the above we'll have two zeros of order one in RR and P+QP+Q. But for OO we'll have b=0b=0 so ordO(ax+czy)=1\text{ord}_{O}(\frac{ax+cz}{y})=1 and this the pole at OO has order 2-2. To sum up

div(l/z)=(P+Q)+(R)2(O)\text{div}(l'/z)=(P+Q)+(R)-2(O)

So we have:

0div(l/l)=(P+Q)+(R)2(O)(P)(Q)(R)+3(O)=(P+Q)(P)(Q)+(O)=((P+Q)(O))((P)(O))((Q)(O))    ε1(P+Q)=ε1(P)+ε1(Q)0\sim \text{div}(l'/l)=(P+Q)+(R)-2(O)-(P)-(Q)-(R)+3(O)=\\ (P+Q)-(P)-(Q)+(O) = ((P+Q)-(O))-((P)-(O))-((Q)-(O)) \implies \\ \varepsilon^{-1}(P+Q)=\varepsilon^{-1}(P)+\varepsilon^{-1}(Q)

c.

Follows immediately from (a)(a) and (b)(b)

\square

def: Elliptic curve group multiplication by integer

(E,O)EPE[n]P:=P+P++Pn times\begin{align*} &\sphericalangle \\ &(E,O) \in \mathcal E \\ &P \in E \\ \hline \\ &[n]P:=\underbrace{P+P+\ldots+P}_{n \text{ times}} \end{align*}
note

This is standard thing that we already discussed that each group is a Z\Z-module

Proposition 4.2.4: Prinicipal divisor criterion

(E,O)ED=PEnP(P)DDiv(E)    DDiv0(E),PE[nP]P=O\begin{align*} &\sphericalangle \\ &(E,O) \in \mathcal E \\ &D = \sum_{P \in E}n_P(P) \\ \hline \\ &D \in \text{Div}_{\lang \rang}(E) \iff D \in \text{Div}^0(E), \sum_{P \in E}[n_P]P=O \end{align*}

Proof

DDiv(E)    D0    O=ε1(D+Div(E))=PE[nP](PO)=PE[nP]PD \in \text{Div}_{\lang \rang}(E) \iff D \sim 0 \iff O=\varepsilon^{-1}(D+\text{Div}_{\lang \rang}(E))=\\ \sum_{P \in E}[n_P](P-O)=\sum_{P \in E}[n_P]P

\square

Isogenies

def: Isogeny

(E1,O1),(E2,O2)Eϕ:E1RspE2ϕ(O1)=ϕ(O2)ϕ:E1EE2ϕisogeny\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{Rsp} E_2 \\ & \phi(O_1)=\phi(O_2) \\ \hline \\ &\phi: E_1 \rightsquigarrow_{\mathcal E} E_2 \\ &\phi - \text{isogeny} \end{align*}

def: Multiplicaion-by-m isogeny

(E,O)EmZ[m]:EEE,{P[m]P,m0P[m](P),m<0[m]multiplication by m isogeny\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ &m \in \Z \\ &[m]: E \rightsquigarrow_{\mathcal E} E, \begin{cases} P \mapsto [m]P, m \ge 0 \\ P \mapsto [-m](-P), m<0 \end{cases} \\ \hline \\ &[m] -\text{multiplication by m isogeny} \end{align*}

Note that we just defined a group law but why is is an isogeny? We'll not give the proof here but the main idea is it clearly sends OO to OO and taking the formulas from the geometric group law it's clear that it's a rational map. Since EE is smooth (non-singular) then it's a morphism as well.

Propostion 4.2.4: Isogeny induces a group homomorphism

(E1,O1),(E2,O2)Eϕ:E1EE2P,QE1ϕ:(E1,O1)G(E2,O2)\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{\mathcal E} E_2 \\ & P, Q \in E_1 \\ \hline \\ &\phi: (E_1, O_1) \rightsquigarrow_G (E_2, O_2) \end{align*}

Proof

If PE1:ϕ(P)=0\forall P \in E_1: \phi(P)=0 then there's nothing to prove. Otherwise ϕconst\phi \ne \text{const} and notice that by (3.4.10)(3.4.10) ϕ\phi^* and ϕ\phi_* takes divisors of degree 00 to divisors of degree 00 and principal divisors to principal divisors. Moreover they do it as homomorphisms:

ϕ:Pic0(E2)GPic0(E1)ϕ:Pic0(E1)GPic0(E2)\phi^*: \text{Pic}^0(E_2) \rightsquigarrow_G \text{Pic}^0(E_1) \\ \phi_*: \text{Pic}^0(E_1) \rightsquigarrow_G \text{Pic}^0(E_2) \\

Coupling that with (4.2.3)(4.2.3) we have the commutative diagram:

E1,ε11Pic0(E1)ϕϕE2,ε2Pic0(E2)\begin{CD} E_1 @>\cong, \varepsilon_1^{-1}>> \text{Pic}^0(E_1) \\ @V\phi VV @VV\phi_*V \\ E_2 @<\cong, \varepsilon_2<< \text{Pic}^0(E_2) \end{CD}

Thus ϕ\phi is a homomorphism

\square

In the course of the proof we shown ϕ\phi as a group homomorphism using zero degree-zero picard groups. But we can also go in other direction and build a E2GE1E_2 \rightsquigarrow_G E_1 homomorphism using ϕ\phi^*:

E1,ε1Pic0(E1)ϕ^ϕE2,ε21Pic0(E2)\begin{CD} E_1 @<\cong, \varepsilon_1<< \text{Pic}^0(E_1) \\ @A\hat \phi AA @AA\phi^*A \\ E_2 @>\cong, \varepsilon_2^{-1}>> \text{Pic}^0(E_2) \end{CD}

Proposition 4.2.6: Dual isogeny

(E1,O1),(E2,O2)Eϕ:E1EE2,ϕconstdegϕ=m!ϕ^:(E2,O2)εE(E1,O1),ϕϕ^=[m]Then as a group homomorphism:ϕ^:(E2,O2)GDiv0(E2)ϕGDiv0(E1)sumG(E1,O1)ϕ^:Q(Q)(O)ϕ((Q)(O))=nP(P)[nP]P\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{\mathcal E} E_2, \phi \ne \text{const} \\ &\deg \phi = m \\ \hline \\ &\exists! \hat \phi: (E_2, O_2) \rightsquigarrow_{\varepsilon_E} (E_1, O_1), \phi \circ \hat \phi = [m] \\ &\text{Then as a group homomorphism}:\\ &\begin{align*} &\hat \phi: (E_2, O_2) \rightsquigarrow_G \text{Div}^0 (E_2) \overset{\phi^*}\rightsquigarrow_G \text{Div}^0 (E_1) \overset{\text{sum}} \rightsquigarrow_G (E_1, O_1) \\ &\hat \phi: Q \mapsto (Q) - (O) \mapsto \phi^*((Q)-(O))=\sum n_P(P) \mapsto \sum [n_P]P\\ \end{align*} \end{align*}

def: Dual isogeny

(E1,O1),(E2,O2)Eϕ:E1EE2ϕ^dual isogeny from (4.2.6)ϕ=const    ϕ=ϕ^=[0]\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{\mathcal E} E_2 \\ \hline \\ &\hat \phi - \text{dual isogeny from } (4.2.6) \\ &\phi = \text{const} \implies \phi=\hat \phi = [0] \end{align*}

Proposition 4.2.6: Dual isogeny properties

(E1,O1),(E2,O2)Eϕ:E1EE2,ϕconstdegϕ=mϕϕ^=[m] on E1,ϕ^ϕ=[m] on E2η:E2EE3    ϕη^=ϕ^η^ψ:E1EE2    ϕ+ψ^=ϕ^+η^nZ:[n]^=[n]degϕ=degϕ^ϕ^^=ϕ\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{\mathcal E} E_2, \phi \ne \text{const} \\ &\deg \phi = m \\ \hline \\ &\begin{align*} &\phi \circ \hat \phi = [m] \text{ on } E_1, \hat \phi \circ \phi = [m] \text{ on } E_2\hspace{0.5cm} \tag{a}\\ &\eta: E_2 \rightsquigarrow_{\mathcal E} E_3 \implies \widehat{\phi \circ \eta} = \hat \phi \circ \hat \eta \hspace{0.5cm} \tag{b}\\ &\psi: E_1 \rightsquigarrow_{\mathcal E} E_2 \implies \widehat{\phi + \psi} = \hat \phi + \hat \eta \hspace{0.5cm} \tag{c}\\ &\forall n \in \Z: \widehat{[n]}=[n]\hspace{0.5cm} \tag{d}\\ &\deg \phi = \deg \hat \phi \hspace{0.5cm} \tag{e}\\ &\hat {\hat \phi}=\phi\hspace{0.5cm} \tag{f}\\ \end{align*} \end{align*}

Proposition 4.2.7: Multiplicaion-by-m isogeny degree

(E,O)EmZdeg[m]=m2\begin{align*} &\sphericalangle \\ &(E, O) \in \mathcal E \\ & m \in \Z \\ \hline \\ &\deg[m]=m^2 \end{align*}

Proof

Let d=deg[m]d=\deg[m] and consider ϕ=[m]\phi=[m]. Then by (4.2.6)(4.2.6):

[d]=ϕϕ^=[m][m]^=[m][m]=[m2]    d=m2[d]=\phi \circ \hat \phi = [m]\circ \widehat{[m]}=[m]\circ[m]=[m^2] \implies d = m^2

\square

def: Positive definite quadratic form

GGAd:GR(.,.):G×GR,(a,b)d(a+b)d(a)d(b)a1,a2,bG:(a1+a2,b)=(a1,b)+(a2,b)a,b1,b2G:(a,b1+b2)=(a,b1)+(a,b2)aG:d(a)0d(a)=0    a=e(neutral element)dpositive definite quadratic form\begin{align*} &\sphericalangle \\ &G \in \mathcal G^{\mathcal A} \\ &d: G \to \R \\ &(.\,,.): G \times G \to \R, (a, b) \mapsto d(a+b) - d(a) - d(b) \\ &\forall a_1, a_2, b \in G: (a_1+a_2, b) =(a_1, b) + (a_2, b) \\ &\forall a, b_1, b_2 \in G: (a, b_1+b_2) =(a, b_1) + (a, b_2) \\ &\forall a \in G: d(a) \ge 0 \\ &d(a) = 0 \iff a = e\, (\text{neutral element}) \\ \hline \\ &d - \text{positive definite quadratic form} \end{align*}

For elliptic curves we define Hom(E1,E2)\text{Hom}(E_1, E_2) as the set of all isogenies from E1E_1 to E2E_2.

Proposition 4.2.8: Isogenies degree is a positive definite quadratic form

(E1,O1),(E2,O2)Edeg:Hom(E1,E2)Z,ϕdegϕdeg positive definite quadratic form\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ &\text{deg}: \text{Hom}(E_1, E_2) \to \Z, \phi \mapsto \deg \phi \\ \hline \\ &\text{deg } - \text{positive definite quadratic form} \end{align*}

Elliptic curve group over a finite field

Consider and elliptic curve defined over Fq:(E,O)/Fq\mathbb F_q: (E,O)/\mathbb F_q. Obviously

EFqq2|E_{\mathbb F_q}| \le q^2

We can easily refine it further since for each xx in the equation we get a maximum of two yy so the trivial upper bound is:

EFq2q+1|E_{\mathbb F_q}| \le 2q+1

Let's make it even more precise.

Proposition 4.2.9: Separability of multiplication-by-m and Frobenuis in a finite field

q=pn,pP(E,O)/FqEm+nρn separable    pm\begin{align*} &\sphericalangle \\ &q=p^n, p \in \mathfrak P \\ &(E, O)/\mathbb F_q \in \mathcal E \\ \hline \\ &m+n\rho_{\rightsquigarrow}^n - \text{ separable} \iff p \nmid m \end{align*}

Before going further we note the following fact. Each field extension E/FE/F may be decomposed into E/S/FE/_{\boxminus}S/_{\Box}F and so we can define the degree of a rational map degϕ=degϕsdegϕi\deg \phi = \deg \phi_s \cdot \deg \phi_i. Where degϕs\deg \phi_s is the degree of separable extension and degϕi\deg \phi_i is the degree of purely inseparable extension.

Now remember that separability is a notion of whether all roots are different (separable) or all roots are glued into one (purely inseparable). In case of ramification we have several points in pre-image glued together into one. This hints that there's a relation between separability and ramification. In general it is true that unramified mapping is necessary separable. Moreover in case of elliptic curves:

Q:#ϕ1(Q)=degϕseϕ(Q)=degϕi\forall Q: \\ \#\phi^{-1}(Q)= \deg \phi_s \\ e_\phi(Q) = \deg \phi_i \\

The above discussions needs strict proofs but we'll skip it here for brevity.

Propostion 4.2.10: Number of points in kernel is separable mapping degree

(E1,O1),(E2,O2)Eϕ:E1EE2ϕseparablekerϕ=degϕ\begin{align*} &\sphericalangle \\ &(E_1, O_1), (E_2, O_2) \in \mathcal E \\ & \phi: E_1 \rightsquigarrow_{\mathcal E} E_2 \\ & \phi - \text{separable} \\ \hline \\ &|\ker{\phi}|=\deg \phi \end{align*}

Proof

By definition kerϕ=ϕ1(O)=degϕ|\ker \phi| = |\phi^{-1}(O)| = \deg \phi since ϕ\phi is separable.

\square.

Proposition 4.2.11: Hasse bound

q=pn,pP(E,O)/FqEq+12qEFqq+1+2q\begin{align*} &\sphericalangle \\ &q = p^n, p \in \mathfrak P \\ &(E, O) / \mathbb F_q \in \mathcal E \\ \hline \\ &q+1-2\sqrt q \le |E_{\mathbb F_q}| \le q+1+2\sqrt q \end{align*}

Proof

First consider some quadratic form dd with (a,b):=d(a+b)d(a)d(b)(a,b):=d(a+b)-d(a)-d(b) and assume it has values in Z\Z. Then we have:

(e,e)=(e+e,e)=(e,e)+(e,e)    (e,e)=00=(e,e)=d(e+e)2d(e)=d(e)    d(e)=0(a,e)=d(a+e)d(a)d(e)=00=((m1)a,aa)=((m1)a,a)+((m1)a,a)=d(ma)d((m1)a)d(a)+d((m2)a)d((m1)a)d(a)=d(ma)2d((m1)a)+d((m2)a)2d(a)    d(ma)=2d((m1)a)+2d(a)d((m2)a)(e,e) = (e+e,e)=(e,e)+(e,e) \implies (e,e)=0 \\ 0 = (e,e)=d(e+e)-2d(e)=-d(e) \implies d(e)=0 \\ (a,e)=d(a+e)-d(a)-d(e)=0 \\ 0=((m-1)a, a-a)=((m-1)a, a)+((m-1)a, -a)= \\ d(ma)-d((m-1)a)-d(a)+d((m-2)a)-d((m-1)a)-d(a)= \\ d(ma)-2d((m-1)a)+d((m-2)a)-2d(a) \implies \\ d(ma)= 2d((m-1)a)+2d(a)-d((m-2)a)

We want to prove that d(ma)=m2d(a)d(ma)=m^2d(a). Obvoiusly true for m=1m=1. Assume it's true for nm1n\le m-1:

d(ma)=2(m1)2d(a)+2d(a)(m2)2d(a)=m2d(a)d(ma)=2(m-1)^2d(a)+2d(a)-(m-2)^2d(a)=m^2d(a)

Next:

0d(manb)=(ma,nb)+d(ma)+d(nb)=mn(a,b)+m2d(a)+n2d(b)0 \le d(ma-nb)=(ma,nb)+d(ma)+d(nb)=mn(a,b)+m^2d(a)+n^2d(b)

Assume m:=(a,b),n:=2d(a)m:=-(a,b), n:=2d(a) then

2d(a)(a,b)2+(a,b)2d(a)+4d(a)2d(b)=d(a)(4d(a)d(b)(a,b)2)0    4d(a)d(b)(a,b)20    (a,b)2d(a)d(b)-2d(a)(a,b)^2+(a,b)^2d(a)+4d(a)^2d(b) = d(a)(4d(a)d(b)-(a,b)^2) \ge 0 \implies \\ 4d(a)d(b)-(a,b)^2 \ge 0 \implies \\ |(a,b)| \le 2\sqrt{d(a)d(b)}

In particluar, using (4.2.8)(4.2.8):

deg(ϕ+ψ)deg(ϕ)deg(ψ)2deg(ϕ)deg(ψ)|\deg(\phi+\psi)-\deg(\phi)-\deg(\psi)| \le 2 \sqrt{\deg(\phi)\deg(\psi)}

Next, consider EFqE_{\mathbb F_q}. We know that EFq={PE:σGal(Fq/Fq):Pσ=P}E_{\mathbb F_q}=\{P \in E: \forall \sigma \in \text{Gal}(\overline {\mathbb F}_q/\mathbb F_q): P^{\sigma}=P\}. From (2.10.5)(2.10.5) we know that Gal(Fq/Fp)=ρ\text{Gal}(\mathbb F_q/ \mathbb F_p) = \lang \rho \rang. By (2.8.10)(2.8.10) any extension Fr\mathbb F_r of Fq\mathbb F_q will have the property r=qkr=q^k for some kk. Thus Gal(Fr/Fq)=ρn\text{Gal}(\mathbb F_r/ \mathbb F_q)=\lang \rho^n \rang. Since F\overline F is the limit fo such extensions and each Galois group is generated by ρn\rho^n then Gal(Fq/Fq)=ρn\text{Gal}(\overline{\mathbb F}_q/ \mathbb F_q)=\lang \rho^n \rang. And so we can say that

EFq={PE:Pρn=P}E_{\mathbb F_q}=\{P \in E: P^{\rho^n}=P\}

By (4.2.9)(4.2.9) we know that (1ρn)(1-\rho^n) is a separable mapping so by (4.2.10)(4.2.10) we have:

EFq=ker(1ρn)=deg(1ρn)|E_{\mathbb F_q}|=|\ker (1-\rho^n)|=\deg(1-\rho^n)

Finally recall that by (3.4.8.c):degρn=pn=q(3.4.8.c): \deg\rho^n=p^n=q and obviously deg[1]=1\deg[1]=1 so:

EFqq1=deg(1ρn)deg(ρn)deg[1]2deg(ρn)deg[1]=2q||E_{\mathbb F_q}|-q-1|=|\deg(1-\rho^n)-\deg(\rho^n)-\deg[1]|\leq 2\sqrt{\deg(\rho^n)\deg[1]}=2\sqrt q

\square